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For spiral Poiseuille flow with radius ratios η ≡ Ri/Ro =0.77 and 0.95, we have
computed complete linear stability boundaries, where Ri and Ro are the inner and
outer cylinder radii, respectively. The analysis accounts for arbitrary disturbances of
infinitesimal amplitude over the entire range of Reynolds numbers Re for which the
flow is stable for some range of Taylor number Ta , and extends previous work to
several non-zero rotation rate ratios µ ≡ Ωo/Ωi , where Ωi and Ωo are the (signed)
angular speeds. For each combination of µ and η, there is a wide range of Re for
which the critical Ta is nearly independent of Re, followed by a precipitous drop
to Ta =0 at the Re at which non-rotating annular Poiseuille flow becomes unstable
with respect to a Tollmien–Schlichting-like disturbance. Comparison is also made to
a wealth of experimental data for the onset of instability. For Re > 0, we compute
critical values of Ta for most of the µ = 0 data, and for all of the non-zero-µ data. For
µ = 0 and η = 0.955, agreement with data from an annulus with aspect ratio (length
divided by gap) greater than 570 is within 3.2% for Re � 325 (based on the gap and
mean axial speed), strongly suggesting that no finite-amplitude instability occurs over
this range of Re. At higher Re, onset is delayed, with experimental values of Tacrit

exceeding computed values. For µ = 0 and smaller η, comparison to experiment (with
smaller aspect ratios) at low Re is slightly less good. For η =0.77 and a range of µ,
agreement with experiment is very good for Re < 135 except at the most positive or
negative µ (where Taexpt

crit >Tacomp
crit ), whereas for Re � 166, Taexpt

crit >Tacomp
crit for all but

the most positive µ. For η =0.9497 and 0.959 and all but the most extreme values
of µ, agreement is excellent (generally within 2%) up to the largest Re considered
experimentally (200), again suggesting that finite-amplitude instability is unimportant.

1. Introduction
Cotrell & Pearlstein (2004), in a companion paper hereinafter referred to as Part 1,

present complete stability boundaries for spiral Poiseuille flow (SPF) for the radius
ratio η ≡ Ri/Ro =0.5 and several rotation rate ratios µ ≡ Ωo/Ωi over the entire range
of Reynolds number Re ≡ VZ (Ro − Ri)/ν for which the flow is linearly stable at any
Taylor number Ta ≡ Ωi(Ro − Ri)

2/ν, where ν and VZ are the kinematic viscosity and
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the mean of the axial component of the base-flow velocity, and Ωi and Ωo are the
(signed) angular velocities of the inner and outer cylinders, whose radii are Ri and
Ro, respectively. Their work, for the η values in the experiments and computations
of Takeuchi & Jankowski (1981) and computations of Meseguer & Marques (2002),
extends the Re range investigated eightyfold, and shows how the Re = 0 centrifugal
instability connects to a high-Re Tollmien–Schlichting (TS)-like instability. The results
of Part 1 also establish that when µ exceeds the Rayleigh limit µ = η2, there is an
Re range in which SPF is linearly stable for all Ta , and that when µ �= 1, there is a
range in which two critical Ta values exist for each Re.

Contemporaneous to the work of Takeuchi & Jankowski, Ng & Turner (1982)
reported computations for µ = 0, considering arbitrary infintesimal disturbances over
0 � Re � 6000 for η =0.77 and 0.95, and axisymmetric disturbances up to Re =7739.5
for η =0.95. For both radius ratios, the critical Taylor number, Tacrit, increases with
Re before reaching a broad plateau. For η = 0.95, the Ta at which SPF becomes
unstable with respect to axisymmetric disturbances was shown to decrease rapidly
beyond Re = 6000. Their results agree well with the µ = 0 data of Mavec (1973) up
to Re = 400 for η = 0.77, and Snyder (1962, 1965) up to Re = 200 for η ≈ 0.95.

Here, for the radius ratios of Ng & Turner, which are equal or close to those for
most of the experimental work, we compute complete stability boundaries at several
µ, including the µ = 0 cases studied by Ng & Turner. For Re > 0, we also present
results for most of the combinations of Re and η for the µ = 0 data (Kaye & Elgar
1958; Becker & Kaye 1962; Sorour 1977; Gravas & Martin 1978; Sorour & Coney
1979; Greaves, Grosvenor & Martin 1983), and all combinations of Re and η for
µ �= 0 (Snyder 1965; Mavec 1973).

The stability boundaries extend the earlier work of Ng & Turner for η =0.77 and
0.95 by accounting for arbitrary disturbances of infinitesimal amplitude over the full
Re range of the linear stability boundary. We show that in the only SPF case (µ = 0,
η = 0.95) for which a connection of the Re = 0 centrifugal instability to the high-Re
shear instability had been made (Ng & Turner 1982), transition occurs from a non-
axisymmetric centrifugal instability to a non-axisymmetric TS-like instability, at an
Re in the range where Ng & Turner considered only axisymmetric disturbances.

Takeuchi & Jankowski and Ng & Turner noted that beyond some µ-dependent
Re value, experimental Tacrit values found by flow visualization lie above critical
values computed by linear stability theory, to an extent that increases with Re.
Takeuchi & Jankowski concluded that “the linear theory has an even greater range of
applicability than demonstrated here,” and proposed two mechanisms for systematic
underprediction of Tacrit (or ‘delayed onset’) at higher Re. The first is associated
with experimental annuli insufficiently long to allow secondary flow to develop to
detectable amplitudes. The second pertains to experiments in which dTacrit/dRe < 0
using a constant-head pump, in which case formation of weak vortical structures
would have the effect of reducing the mean axial velocity. ‘Delayed onset’ might also
be associated with instability of an incompletely developed ‘base flow’, due to entrance
effects. We use ‘subcritical onset’ to refer to onset below the critical Ta due to any
reason, including ‘finite-amplitude’ disturbances having an amplitude threshold, as
well as instability associated with an incompletely developed base flow at a Ta below
that predicted for the fully developed base flow.

Comparison to experimental data allows us to draw some conclusions about the
range of Re, µ, and η for which linear stability analysis is valid, and about the effects of
annulus aspect ratio L/(Ro − Ri) on the apparent critical Ta , where L is the annulus
length.
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Essentially perfect agreement between our results and the µ = 0 data of Sorour
& Coney at η = 0.955 and the µ = 0 and µ �= 0 data of Mavec (1973) at η = 0.77
and Snyder (1965) at η ≈ 0.95 shows that over a broad range of Re, µ, and η,
finite-amplitude instability does not occur, and that onset delay mechanisms are also
unimportant. Thus, for at least some combinations of µ and η, it is likely that
instability sets in through infinitesimal disturbances up to Re in excess of several
hundred. The results also allow us to identify regimes in which either subcritical or
delayed onset occurs.

Numerical methods were discussed in Part 1. The remainder of the present paper
is organized as follows. In § 2, complete stability boundaries for SPF are presented
for η = 0.77 and 0.95 and several values of µ. In § 3, we present results for specific
experimental combinations of Re, µ, and η, for which no previous comparison to
theory has been made, along with detailed comparison to data and discussion of
implications for interpretation of data. Additional discussion follows in § 4, and some
conclusions are presented in § 5.

2. Complete stability boundaries
For the radius ratios η (0.77 and 0.95) considered by Ng & Turner, we report

complete linear stability boundaries in the (Re, Ta)-plane at several values of the
rotation rate ratio µ, accounting for arbitrary three-dimensional disturbances of
infinitesimal amplitude. Convergence tests, described in Part I for η = 0.5, were
performed for η = 0.77 and 0.95 at each µ. In general, the number of radial
expansion functions required for convergence decreases with increasing η. Except
where otherwise indicated, our results are in excellent agreement with those tabulated
by Ng & Turner over the Re ranges they investigated. Our results cover the entire
range of Re for which SPF is linearly stable, from Re = 0 (the circular Couette limit)
to ReAP (beyond which SPF is unstable for all Ta , corresponding to onset of TS-like
instability in non-rotating annular Poiseuille flow). We note that ReAP is independent
of µ, since it corresponds to the non-rotating limit.

2.1. Stability boundary for η = 0.77

For µ = 0 and η = 0.77, Ng & Turner accounted for axisymmetric and non-
axisymmetric disturbances up to Re = 6000. As discussed in § 3 of Part 1 in the
context of code validation, comparison to their results shows excellent agreement
over that range. At higher Re, figure 1(a) shows that Tacrit continues on a plateau
(Tacrit =58.6) until the transition at Re∗ = 8677, and falls rapidly to zero over the
range Re∗ < Re � ReAP = 8883.3. The value of ReAP is in good agreement with
previous graphical results (Mahadevan & Lilley 1977; Garg 1980) for the stability of
nonrotating annular Poiseuille flow.

There are qualitative as well as quantitative differences between the η =0.5 and
0.77 cases. For η =0.77, figure 1(a) shows that Tacrit increases with Re up to Re ≈ 200.
The stabilization by axial flow over the entire range of centrifugal instability contrasts
with the η = 0.5 case, where increasing Re stabilized and destabilized SPF in different
parts of the pre-plateau range 10 <Re < 400. For η =0.77, Tacrit is nearly constant
in a plateau range (200 < Re < 8000) that starts at smaller Re than for η = 0.5. The
value of ReAP (8883.3) is also smaller than that (10 359) for η = 0.5. The dependence
of ReAP on η is part of a systematic variation from ReAP =5772 as η → 1 (see § 4.1) to
ReAP → ∞ as η → η̂ from above, where η̂ < 0.15 is the minimum η for which annular
Poiseuille flow is unstable (Mahadevan & Lilley 1977; Garg 1980).
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Figure 1. For µ= 0 and η =0.77: (a) critical Ta, (b) critical m, (c) critical k,
(d) critical c versus Re.

As for η = 0.5, figure 1(b) shows that mcrit increases over 0 � Re � Re∗ by unit
steps. Our results agree with tabulated values of Ng & Turner except at Re = 300 and
500 where, as discussed in Part 1, we find critical azimuthal wavenumbers mcrit = 19
and 20, respectively, in contrast to their values of 20 and 21, apparently due to our
tighter control of convergence. Figure 1(b) shows that mcrit =21 over much of the
high-Re plateau, compared to a maximum mcrit =7 for η =0.5. As Re passes through
Re∗, mcrit decreases abruptly from 21 to 2. On the TS-like branch, mcrit suffers a final
step decrease to 1, its value at ReAP. This contrasts to the constant mcrit = 2 on the
TS-like branch for η = 0.5.

As for η =0.5, figures 1(b) and 1(c) show that the discontinuities of the critical
axial wavenumber kcrit occur at Re values at which mcrit jumps, as described by Ng &
Turner. There is again an Re ( ≈ 42) below which kcrit increases monotonically with
Re for each mcrit, and above which kcrit decreases monotonically with Re for each
mcrit. We note that kcrit again decreases as Re approaches Re∗ from below, as found
for η = 0.5.

For η = 0.77, figure 1(d) shows the piecewise-continuous Re dependence of the
critical wave speed ccrit. Our computed ccrit values are in excellent agreement with those
tabulated by Ng & Turner (1982) at their 18 Re values in the range 0.01 � Re � 6000,
except at Re =300 and 500, where our mcrit values differ from theirs by 1. As for
η = 0.5, the almost constant ccrit when mcrit = 0 corresponds to a dimensional frequency
increasing nearly linearly from zero as VZ increases. For each mcrit < 15, ccrit decreases
monotonically with Re, while for mcrit � 15, ccrit increases piecewise continuously up to
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mcrit = 21. This contrasts with the η =0.5 results, where ccrit decreased monotonically
with Re for each mcrit. For 800< Re � Re∗ (mcrit = 21), ccrit remains nearly constant
(ccrit ≈ 2.36). As Re passes through Re∗, ccrit decreases abruptly to about 0.39, and
then decreases slightly to its Ta = 0 value of 0.38 as Re increases from Re∗ to ReAP.

The stair-step behaviour of mcrit and the associated discontinuous dependence of
kcrit and ccrit on Re indicate that Tacrit is a continuous but only piecewise-differentiable
function of Re. That the slope discontinuities are less apparent than for η =0.5 reflects
the fact that the values of mcrit are considerably larger for η =0.77, so that (m+1)/m

and (m + 1)2/m2, the ratios of consecutive m-dependent terms in the disturbance
equations, are closer to unity at the larger η. The step ‘width’ (i.e. the Re range
for which mcrit is constant) is considerably smaller for η = 0.77 than for η =0.5,
corresponding to the larger range of critical m for η = 0.77 (0 � mcrit � 21) than for
η =0.5 (0 � mcrit � 7).

For µ =0.2 and η =0.77, figure 2(a) shows that Tacrit increases monotonically with
Re from 28.90 at Re =0, nearly doubling to a maximum of 56.78 near Re = 115, and
decreases slightly to a plateau value of about 55.6 for Re up to Re∗. The critical m

(not shown) increases to 20 in unit steps for 0 � Re � 900, and remains constant for
900 � Re <Re∗ = 8712. As one passes through Re∗, mcrit jumps from 20 to 2. As Ta
decreases below about 10, mcrit on the nearly vertical TS-like branch again decreases
from 2 to 1, the value it maintains all the way to ReAP =8883.3, where Tacrit = 0.

The critical k (also not shown) increases piecewise continuously with Re until
reaching a global maximum near Re = 60, beyond which it decreases sharply until
Re∗. The Re variation of kcrit is similar to that found for η =0.5 and µ = 0.2. The
dependence of ccrit on Re is very similar to that for µ = 0.

For µ = −0.5, the η = 0.5 and 0.77 stability boundaries differ significantly. First,
figure 2(b) shows that for η =0.77, SPF is stabilized as Re increases, with Tacrit

increasing monotonically from its Re = 0 value of 32.83 to about 69 on a broad
plateau between about Re = 700 and the drop at Re∗ = 8579. This contrasts with the
η =0.5 case, where SPF is alternately destabilized and stabilized for 0 <Re < 1000.
Second, for η =0.77, the nearly constant Tacrit on the plateau ( ≈ 69) is greater than
the Re = 0 value, unlike the η = 0.5 case, for which Tacrit on the plateau lies below the
Re =0 value. Finally, the scalloped behaviour for η =0.77 is less pronounced than
for η = 0.5.

As for η = 0.5, the computed mcrit (not shown) increases in unit steps for Re <Re∗,
with mcrit = 0 up to Re ≈ 4, and onset through non-axisymmetric disturbances (mcrit

up to 24) at higher Re. We compute mcrit = 23 and 24 over relatively wide ranges
on the high-Re plateau. As Re passes through Re∗, mcrit jumps from 24 to 2.
For Re∗ < Re <ReAP, mcrit again decreases from 2 to 1. The piecewise-continuous
dependence of kcrit and ccrit on Re is qualitatively similar to that for η = 0.5.

2.2. Stability boundaries for η =0.95

For η = 0.95 and µ =0, Ng & Turner computed Tacrit for 0 � Re � 6000, and
the Ta at which SPF would be destabilized by axisymmetric disturbances for
6000 � Re � 7739.5. We have shown that ReAP is indeed 7739.5 (where mcrit = 0),
and completed the stability boundary by considering non-axisymmetric disturbances
up to that Re. Comparison to the results of Ng & Turner over 0 � Re � 6000 (see
Part 1) is excellent. For Re > 6000, our results agree with theirs only in a very
narrow range just below ReAP =7739.5, in which mcrit is actually zero. In particular,
at Re =7000, Ng & Turner report a Taylor number for the onset of axisymmetric
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Figure 2. Critical Ta versus Re for η =0.77: (a) µ= 0.2, (b) µ= −0.5.

instability which, using the present scaling, corresponds to Ta = 367.68, as opposed
to our value of 47.56 (for mcrit = 149).

For η =0.95, the stability boundary (figure 3) is qualitatively similar to that
for η = 0.77, with the nearly constant Tacrit ( ≈ 47) on the high-Re plateau
(1000< Re < 7716) being greater than at Re = 0. For η = 0.95, Tacrit is smaller than
for η = 0.5 and 0.77.

As for η = 0.5 and 0.77, mcrit (not shown) increases by unit steps (from 0 to 149)
over 0 � Re < Re∗. At Re∗, mcrit jumps from 149 to 2. For Re∗ � Re � ReAP, mcrit

decreases from 2 to 1 to 0, its value at ReAP. Transition from mcrit = 1 to 0 occurs in
the range 7737.55 < Re < 7739.22, so that mcrit �= 0 for 6000 � Re � 7737.55, leading
to the differences between our Tacrit values and those of Ng & Turner in the latter
range.
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Figure 3. Critical Ta versus Re for µ= 0 and η = 0.95.

As Re increases from zero to about 54, kcrit increases piecewise monotonically.
Beyond Re = 54, kcrit decreases monotonically with Re over each range of constant
mcrit. The maximum kcrit occurs near Re =120. Again, there is excellent agreement
between our mcrit values and those of Ng & Turner for Re � 6000. For η = 0.95,
our kcrit and ccrit values are essentially identical to theirs over that range, except at
Re =10, 100, and 2000, where differences in ccrit are due to unit differences in mcrit.
The dependence of kcrit and ccrit on Re is qualitatively similar to that for η = 0.5 and
0.77.

As discussed for η = 0.77, the narrowness of the Re ranges over which mcrit is
constant, as well as the size of mcrit, contribute to the apparent smoothness of the
stability boundary over the entire range of centrifugal instability, and of the kcrit and
ccrit plots at high Re. For η = 0.95, the constant-mcrit ranges of Re are so narrow,
and mcrit is so large, that discontinuities in kcrit and ccrit are not graphically apparent
beyond about Re = 80 (corresponding to mcrit ≈ 25). This is a consequence of the
fact that for the centrifugal instability, mcrit grows rapidly as η → 1 and behaves
much like a continuous wavenumber. We also note that the mcrit values are fully
resolved. Inadequate resolution (particularly use of insufficiently small tolerances for
the wavenumber and Ta iterations) can lead to spurious non-monotonic variation in
the computed mcrit values, since the minima of neutral curves for large m occur at
extremely similar Ta .

3. Comparison to experiment
For µ = −0.5, 0, and 0.2, Takeuchi & Jankowski compared their computed and

experimental results at η = 0.5 over 0 � Re � 100. For µ = 0, Ng & Turner compared
their computations at η = 0.77 to data of Nagib (1972) and Mavec (1973) up to
Re =400 at the same η, and computations at η = 0.95 to η =0.959 data of Snyder
(1962, 1965) up to Re =200. These comparisons showed generally good agreement
for small Re.
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Authors η Re Ta
expt
crit Ta

comp
crit

Kaye & Elgar (1958) 0.734 0 (53.5) 29.6 30.27
L/(Ro − Ri) = 114 30.91 (85.1) 47.1 39.70

47.27 (102) 56.6 49.09
76.36 (112) 61.9 57.49

115.2 (114) 63.3 60.65
142.4 (117) 64.6 61.31
193.9 (119) 66.0 61.60
263.6 (119) 66.0 61.61
333.3 (125) 69.3 61.56
401.8 (128) 71.1 61.56
551.5 (117) 64.6 61.48

Becker & Kaye (1962) 0.8076 0 (1930) 20.3 22.97
L/(Ro − Ri) ≈ 172 26.5 (2620) 23.6 28.48

55 (7000) 38.6 41.05
111 (10 900) 48.2 50.86
157.5 (16 800) 59.8 53.43
301.5 (16 800) 59.8 55.29
526.5 (20 700) 66.4 55.72
796 (21 300) 67.4 55.81

Table 1. Comparison of experimental and computed values of Tacrit for µ= 0. Parentheses
denote values of differently defined Taylor numbers read from figures of other authors.

Here, we consider data for which no comparison to computation has been made,
including data at higher Re and larger |µ| than considered by Takeuchi & Jankowski
and Ng & Turner. Results for Re and η used in the µ =0 experiments are shown
in § 3.1. In § 3.2, computational results are presented, and detailed comparisons are
made to data, for all µ in the Re > 0 experiments of Mavec (1973) for η = 0.77 and
Snyder (1965) for η =0.9497 and 0.9590. Unless identified by uppercase superscript,
Reynolds and Taylor numbers of other authors are reported using our definitions.

3.1. Comparison to previous experimental work (µ = 0)

Critical Taylor numbers

Kaye & Elgar (1958) studied stability of SPF using smoke visualization and hot-
wire anemometry for η = 0.734 and 0.820 (L/(Ro − Ri) = 114 and 186, respectively).
For Re = 0, the critical rotation rate was said to agree with linear theory to within 1%
for η = 0.734; no comparison was given for η = 0.820. In both cases, Tacrit initially
increased with Re, reaching a maximum between Re = 400 and 550 for η =0.734,
and between 350 and 400 for η = 0.820. For larger Re, Tacrit decreased monotonically
and nearly linearly to zero at Re values near 1000 and 900 for η = 0.734 and 0.820,
respectively. For η = 0.734, table 1 shows the 11 smallest Re values read from figure
13 of Kaye & Elgar, along with their corresponding critical Taylor numbers TaKE

crit (in
parentheses). Also shown are values of Tacomp

crit corresponding to each Re, and values of

Taexpt
crit =TaKE

crit [2(1 + η)/(1 − η)]1/2 calculated from the reported Taylor numbers. Over
the Re range shown in table 1, experimental and computed results are in generally
good agreement. The difference (2%) between the experimental and computed Tacrit

values at Re = 0 is comparable to the 1% difference between the experimental critical
angular velocity and ‘the theoretical value predicted by Taylor’s theory’ cited by Kaye
& Elgar, and provides a measure of the reading error in TaKE . For the larger Re
shown, Taexpt

crit values lie 4–20% above Tacomp
crit . In the Re range where Tacomp

crit exhibits
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plateau behaviour, Taexpt
crit increases slowly until reaching a maximum at some Re

between 400 and 550, beyond which it decreases. For Re values in figure 13 of Kaye
& Elgar larger than shown in table 1, Taexpt

crit decreases to zero near Re =1000, while
Tacomp

crit maintains a plateau value near 61.5, ultimately falling off rapidly to zero near
Re =104 via a TS-like instability. Implications of this comparison for interpretation
of these experimental results, and similar experimental results for η = 0.820 (figure 14
of Kaye & Elgar), are discussed in § 4.1.

For µ = 0, Yamada (1961, 1962) obtained qualitatively similar results for η = 0.971,
0.981, and 0.987. For a number of Re values between 0 and 1100, he reported critical
dimensionless rotation rates at which either the ratio of the torque coefficient to its
base-flow value (Yamada 1961, figure 16) or the dimensionless axial pressure drop
(Yamada 1962, figure 18) increased ‘sharply’. His results, while differing somewhat
among the small-gap radius ratios considered and between the two onset diagnostics,
generally showed that Tacrit is a unimodal function of Re, and reaches its maximum
in the range 400 � Re � 700. Beyond the maximum, Tacrit values reported for both
diagnostics decreased rapidly with Re. For example, at η = 0.987, the reported Tacrit

decreased by about 70% between its maximum near Re = 650 and the largest Re
for which Yamada reported results, 1100. For each η, extrapolation of the reported
critical Taylor numbers to zero (i.e. the annular Poiseuille limit) gives an intercept
near Re = 1200.

For µ = 0 and η ≈ 0.81†, heat transfer measurements by Becker & Kaye (1962)
showed that the ratio of the Nusselt number to its base-flow value undergoes a
well-defined transition at a Tacrit that increases with Re over 0 � Re � 1430. (Beyond
Re =1430, no clear transition is evident.) At the eight smallest Reynolds numbers
they considered, our table 1 shows the Taylor numbers TaBK

crit (in parentheses, read
from their figure 4, and thought to be accurate within one or two units in the third
significant figure) at onset, Taexpt

crit =[2TaBK
crit (1 − η)/(1 + η)]1/2, and Tacomp

crit computed
from our linear analysis at the same η. (Although onset is quite distinct at Re = 1007.5
and 1430, Nusselt numbers before onset at these two Re differed from the nominal
base-flow values by about 10% and 50%, respectively. Note also that the Taylor
number used by Kaye & Elgar differs from that of Becker & Kaye, and that the
Reynolds number used by Kaye and co-workers differs from ours by a factor of
2.) To calculate Taexpt

crit from TaBK
crit , we used η =0.8076, the mean of the η values

corresponding to the radii and gap given by Becker & Kaye.
In general, our results agree well with those of Becker & Kaye. At the four smallest

Re, the experimental Tacrit values lie 6–17% below linear stability predictions, while
at the next four Re, the experimental values are 11–20% higher than predicted.
The latter discrepancy is consistent with inadequate axial development length for the
disturbance flow in the apparatus (L/(Ro − Ri) ≈ 172) of Becker & Kaye, identified
by Takeuchi & Jankowski as an explanation for a similar discrepancy between their
experimental results (with L/(Ro − Ri) ≈ 115) and their own computations. Since
dTacrit/dRe � 0 (see table 1) up to Re =Re∗ for η � 0.77 (see also figures 1a and 3),
the alternative constant-head mechanism proposed by Takeuchi & Jankowski is not
applicable in this case.

Gravas & Martin (1978) used hot-wire anemometry to investigate onset of
secondary flow at µ = 0 for η = 0.576, 0.81, and 0.9 over 43 � Re � 1000. For each η,

† Based on the cylinder radii given, η = 0.8097 ± 0.0008. Based on the reported gap between
cylinders and the outer cylinder radius, η = 0.8055 ± 0.0010.
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Tacrit increased monotonically with Re. Here, we compare our results for the similar
radius ratios of 0.5, 0.77, and 0.95, as well as computations performed at their Re
and η values.

The η = 0.81 and 0.9 results of Gravas & Martin are in general qualitative agreement
with our η = 0.77 and 0.95 computations, with the experimental Tacrit plateaux being
less well-defined. At η = 0.576, however, there is no evidence of the plateau predicted
for η = 0.5 (figure 1a of Part 1). Computations at η = 0.576 show that differences
are not due to different experimental and computational radius ratios, with Tacomp

crit

decreasing monotonically with Re over the same range, consistent with results for η =
0.5, whereas Taexpt

crit increases monotonically with Re over 70 � Re � 255 (see figure 5
of Gravas & Martin). Some of this discrepancy might be associated with annuli of
small aspect ratio L/(Ro − Ri) (between 32 and 175 in the experiments of Gravas &
Martin), in which vortical structures have insufficient opportunity to develop to a de-
tectable amplitude. Significant geometric imperfection (i.e. axial and azimuthal varia-
tions of the gap), as later discussed by Greaves et al. (1983) might also be important.

For µ = 0, Sorour (1977) and Sorour & Coney (1979) used hot-wire anemometry
to determine Tacrit for η = 0.8 over 26 � Re � 468 and for η = 0.955 over 26.4 � Re �
595. For each Re, Sorour & Coney fitted a curve to critical values of TaSC =
2Ta2η2/(1 − η2) at nine uniformly spaced radial locations in the annular gap. Table 2
shows in parentheses the minimum TaSC on that curve as read from either figure 1 of
Sorour & Coney or similar figures of Sorour, along with values of Taexpt

crit calculated
from TaSC using the corresponding η, and computed values Tacomp

crit . (We note that the
values of mcrit at η = 0.95 and 0.955 differ for most Re, so that even for these very
similar radius ratios, we have performed specific computations for the experimental
η.) Parenthetical values of TaSC up to 104 are thought to be correctly read to three
significant figures, while larger values are thought to be in error by no more than one
or two units in the fourth significant figure.

We first consider the η = 0.955 case, for which the aspect ratio is more than four
times its η = 0.8 value. As shown in table 2, our results are in excellent agreement
with the data for Re � 325. The maximum difference is less than 3.2%, and the
mean of the absolute value of the relative difference is 2.2%, both comparable to
uncertainties in Taexpt

crit associated with readability of experimental Taylor numbers as
propagated through the relationship between Ta and TaSC . The aspect ratio in the
η = 0.955 experiments exceeded 570, compared to 114 and 186 for Kaye & Elgar, 172
for Becker & Kaye, 115 for Takeuchi & Jankowski, and a range of 32–175 for Gravas
& Martin. From the close agreement of our computed Tacrit values with the data of
Sorour & Coney, we conclude that finite-amplitude instability either did not occur
in their experiments, or occurred only slightly below the critical values predicted by
linear stability theory. The larger aspect ratio of Sorour & Coney apparently provided
sufficient streamwise length for detectable vortical structures to develop, at least for
Re � 325. As Re increases, table 2 shows that the Ta at which onset is first detected
in an annulus of fixed aspect ratio continues to increase, while the linear analysis
predicts a plateau value of Tacrit.

For η = 0.8 and Re � 320, table 2 shows that agreement between the experiments of
Sorour & Coney and computation is still good, but less close than for η = 0.955. For
η = 0.8, the maximum difference and mean absolute value of the relative difference
over this Re range are 13% and 6.0%, respectively, with the experimental Tacrit values
lying at or slightly below the computed values, except at the two lowest Re and at the
highest Re. (For Re = 36.5, the nearly identical experimental values of TaSC at each
radius seem to be anomalously high.) These results are taken as evidence that for
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Authors η Re Ta
expt
crit Ta

comp
crit

Sorour & Coney (1979) 0.8 26 (3620) 31.9 29.16
L/(Ro − Ri) = 130 36.5 (5420) 39.0 33.80

60 (6380) 42.4 43.78
75 (6810) 43.8 47.29
97 (7800) 46.8 50.55

151 (9040) 50.4 54.08
195 (9760) 52.4 55.12
239 (10 420) 54.1 55.60
281 (11 120) 55.9 55.86
320 (12 100) 58.3 56.00

Sorour & Coney (1979) 0.955 26.4 (2540) 11.1 11.42
L/(Ro − Ri) > 570 33.5 (3440) 12.9 12.64

42 (4670) 15.0 14.32
54 (6000) 17.0 16.91
67 (8040) 19.7 19.29
78.5 (9790) 21.7 20.97
94 (11 480) 23.5 22.97

107 (12 670) 24.7 24.49
135 (15 290) 27.2 27.34
150 (16 180) 27.9 28.68
182 (19 000) 30.3 31.15
200 (20 410) 31.4 32.36
215 (22 210) 32.7 33.27
240 (24 210) 34.2 34.64
260 (26 700) 35.9 35.62
325 (32 790) 39.8 38.19
370 (36 630) 42.0 39.55
450 (44 530) 46.3 41.37
525 (51 500) 49.9 42.60
595 (57 400) 52.6 43.46

Greaves et al. (1983) 0.909 43.75 (10 000) 22.9 21.98
L/(Ro − Ri) ≈ 310 87.5 (23 000) 34.8 31.95

131 (31 200) 40.5 37.36
262 (45 100) 48.7 44.52
435.5 (48 000) 50.2 47.32
800 (43 500) 47.8 48.71

1010 (38 000) 44.7 48.95

Table 2. Comparison of experimental and computed values of Tacrit for µ= 0. Parentheses
denote values of differently defined Taylor numbers read from figures of other authors.

Re � 320, either there is no finite-amplitude instability, or finite-amplitude instability
sets in at Ta values only slightly below those predicted by linear theory. The relatively
small differences between experiment and computation at the highest Re suggest that
the aspect ratio (L/(Ro − Ri) = 130) allows development of detectable disturbances
for η = 0.8 and Re � 320. (Beyond Re = 320, the experimental Tacrit values continue
to grow with Re, while the computed values have essentially reached their plateau, as
shown in table 2.)

Grosvenor (1981) and Greaves et al. (1983) used hot-wire anemometry to detect
onset for µ = 0 over essentially the same range (43.75 � Re � 1112) considered by
Gravas & Martin (1978) for similar η. They reported Taylor numbers at four
azimuthal positions in an annulus with less axial and azimuthal gap variation
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(maximum 3.9% variation from the mean gap for η = 0.909) than in that of Gravas
& Martin. Each parenthetical Tacrit in table 2 was taken from table A2 of Grosvenor
(1981), and is the lowest value at the four positions. For η = 0.909 (with aspect ratio
≈ 310), Tacomp

crit at Re = 43.75 lies less than 5% below Taexpt
crit , with the discrepancy

being about 9% at Re = 87.5, 131, and 262. The discrepancy decreases (to ≈ 6%) at
Re = 435.5, before Taexpt

crit falls increasingly below Tacomp
crit at higher Re. We interpret

these results in terms of sufficient axial development length at low Re, with subcritical
onset at higher Re. For η = 0.565, computations at Re = 69.35, 198.9, and 300.45 show
that computed values lie 40–54% below experimental values. This is consistent with
a profoundly insufficient axial development length at an annular aspect ratio of less
than 50.

For µ = 0 and η = 0.8, Bühler & Polifke (1990) reported onset with mcrit = 1
over 2.7 <Re < 4.6, and with mcrit = 0 at larger and smaller Re. They also repor-
ted a ‘scalloped’ Re–Tacrit stability boundary. Their results differ from ours at η = 0.77
(figure 1a), and from specific computations for η = 0.8, in which we find that instability
sets in through an axisymmetric disturbance (mcrit =0) at Re =3, 3.5, 4, and 4.5. The
aspect ratio in the experiments of Bühler & Polifke was only 20.

Wave speeds

From the definition of the wave speed (see Part 1), one can show that Vdrift/VZ = ccrit,
where Vdrift is the axial drift speed of the vortical structures. For µ = 0, our
results can be compared to two previous reports of dimensionless axial drift speed.
At Taylor numbers somewhat above critical, Donnelly & Fultz (1960) measured
dimensionless drift speeds of 1.25, 1.07, and 1.36 at Re = 3.13, 4.40, and 5.70 for
η = 0.9497, and Howes & Rudman (1998) obtained Vphase/VZ = 1.16 ± 0.005 in slightly
supercritical computations at Re = 2.61, Ta = 12.5, and η =0.9524. These results
compare very well to our computed ccrit values of 1.169 to 1.170 for η = 0.95 over 0 �
Re � 8.

Figure 5 of Sorour & Coney shows experimental Vdrift/VZ values at seven Re over
48 <Re � 500 for η =0.80, and at 19 Re over 16 <Re < 610 for η =0.955. For η =0.80,
Vdrift/VZ decreases monotonically from about 1.5 to about 0.3 over the experimental
Re range. Computations for η = 0.77 (see figure 1d) show that the computed ccrit

decreases monotonically from 1.45 to 1.42 while mcrit = 2 between Re = 38 and 45,
at which point ccrit jumps to 1.54, coincident with mcrit jumping to 3. At larger Re,
the computed ccrit undergoes a series of jump increases, separated by progressively
shorter Re intervals of monotonic decrease. On the scale of the experimental Re
increments, however, ccrit increases monotonically. Computations for η = 0.8 give
similar results. For η = 0.955, the experimental Vdrift/VZ increases from about 1.6 near
Re = 16 to about 2.8 near Re =100, before decreasing to about 1.8 near Re = 610.
For η = 0.95, ccrit is about 1.3 at Re =10, and for the experimental Re increments,
increases monotonically and approaches an asymptote of about 3.3 just beyond the
highest Re considered by Sorour & Coney. These results differ only slightly from
those computed for η = 0.955, and are in good agreement with the data. Simmers &
Coney (1980) state that the earlier wave speed measurements of Sorour & Coney
(for which Taylor numbers were not reported) were performed “with the flow just
critical”, from which one can infer that over the Re range where the critical Ta values
are in excellent agreement, the wave speed should be close to the critical values.

Figure 2 of the experimental paper by Wereley & Lueptow (1999) shows that for µ =
0 and η = 0.83, mcrit jumps from 0 to 1 near Re =8. Our computations show that this
jump occurs at Re = 16 and 8 at η = 0.77 and 0.95, respectively, suggesting that the
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experimental Re for this change is slightly low. Also, invariance of Tacrit with respect
to the direction of the axial flow (see § 5.5 of Part 1) requires that dTacrit/dRe vanish
at Re = 0, suggesting a modification of the approximate boundary between SPF flow
and propagating Taylor-like vortices shown in figure 2 of Wereley & Lueptow.

3.2. Comparison to experiments of Mavec and Snyder

Mavec (1973) and Snyder (1965) reported experimental results for a wide range
of Re and µ at η = 0.77 and η ≈ 0.95, respectively. To date, no comparison of their
non-zero-µ data to computation or theory has been made. Here, we present computed
values of Tacrit for their combinations of Re �= 0 and µ, along with a comparison to
their data.

η =0.77

For η =0.77 and eleven Re in the range 24 � Re � 403.5, Mavec reported cri-
tical combinations of (NRθ )i = 2ΩiRi(Ro − Ri)/ν and (NRθ )o =2ΩoRo(Ro − Ri)/ν,
measured using aqueous glycerol solutions in an annulus with aspect ratio 160.
For each Re, results were reported for a range of µ spanning negative and positive
values.

We have read (NRθ )i and (NRθ )o values for each data point from Mavec’s figure 4,
and calculated µ = (NRθ )oη/(NRθ )i and the corresponding critical Taylor number,
Taexpt

crit =(NRθ )i(1 − η)/2η. These, and Tacomp
crit and mcrit at the calculated µ, are shown

in table 3. Readability errors in (NRθ )i and (NRθ )o are small enough that calculated µ

and Taexpt
crit values are thought to be accurate to within 1%. For the 18 cases shown in

table 3 for which µ>η2 = 0.5929, we expect that there is an Re range for which there
are two values of Tacrit, as discussed for µ = η = 0.5 (see Part 1). For comparison
to Mavec’s results in these cases, we have computed only the smaller Tacrit. In
what follows, we consider the results in two Re ranges: 24 � Re � 106, and Re �
134.75.

For each Re, the experimental and computed values of Tacrit are unimodal functions
of µ, providing that the two µ = 0 data at Re = 33, 49, and 330 are averaged. At
small Re, agreement between experimental and computed Tacrit values is generally
excellent. Over 24 � Re � 106, there are 30 combinations of µ and Re for which
experimental and computed results differ by less than 2%, including ten of the twelve
µ values at Re = 106. This level of agreement suggests that the random errors in
Mavec’s experimental data are generally very small. Nonetheless, at small Re, there
are still some systematic differences between experiment and computation. At each
Re in 24 � Re � 106, the experimental Tacrit exceeds that predicted by linear theory
if µ � −0.7 or µ � 0.35. For −0.7 <µ< 0.35, we have calculated the mean and root-
mean-square (r.m.s.) of the difference ∆ =Tacomp

crit − Taexpt
crit between experimental and

computed Tacrit values, along with the variance of ∆, at each Re. For two Re, the
mean and r.m.s. values are much larger than the variance. At Re = 49, the mean and
r.m.s. differences are 3.3 and 3.4, respectively, and the variance is 0.45. (These values
are not significantly reduced by averaging the two values at µ =0.) At Re = 63.5,
the corresponding values are 3.1, 3.1, and 0.27. By contrast, the mean and r.m.s.
differences and the variance are 0.25, 0.43, and 0.15, respectively, at Re = 24, and
−0.18, 0.41, and 0.16, respectively, at Re = 106. These results suggest small systematic
errors in the experiments at Re = 49 and Re = 63.5, discussed below.

For Re � 134.75, the situation is quite different. First, in this range, the experimental
and computational results agree within (the arbitrary) 2% at only eight points,
four of which are at Re = 134.75, the smallest Re in this range. Second, in this range of
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µ Ta
expt
crit Ta

comp
crit m

comp
crit µ Ta

expt
crit Ta

comp
crit m

comp
crit

Re= 24
−0.37 33.64 33.70 1 0.33 39.58 39.97 0
−0.26 32.52 32.29 1 0.41 46.20 46.18 0

0 31.05 31.86 1 0.46 55.17 53.01 0
0.20 34.64 34.86 1 0.48 76.06 57.03 0

Re= 33
−0.52 38.58 39.10 2 0.17 36.93 38.65 1
−0.37 36.64 36.89 2 0.26 40.61 41.62 1
−0.19 35.22 35.67 2 0.43 55.64 55.07 1

0 33.61 35.97 1 0.50 75.12 70.82 1
0 34.58 35.97 1

Re= 49
−1.01 54.73 54.10 4 0.11 42.81 46.36 4
−0.68 43.49 46.58 4 0.20 45.02 49.03 4
−0.36 40.81 43.14 4 0.25 46.93 51.12 5
−0.13 40.40 43.15 4 0.33 51.73 55.65 5

0 40.81 44.34 3 0.50 77.23 76.96 8
0 41.78 44.34 3

Re= 63.5
−1.01 73.41 59.17 6 0 45.73 49.33 7
−0.94 55.38 55.13 6 0.17 48.99 52.62 8
−0.41 45.79 47.85 6 0.21 50.20 53.79 8
−0.26 44.76 47.60 6 0.24 51.49 54.80 9
−0.17 44.73 47.89 6 0.27 53.11 55.86 9
−0.10 45.37 48.29 7 0.52 77.23 74.13 11

Re= 65.5
−1.05 60.50 58.10 6 0.14 50.46 52.31 8
−0.48 48.26 48.77 6 0.19 51.64 53.59 9
−0.27 47.11 48.15 7 0.28 56.05 56.51 9
−0.20 47.37 48.26 7 0.39 62.82 61.88 10
−0.11 47.52 48.72 7 0.44 69.14 65.36 11

0 47.87 49.88 7 0.49 72.82 69.76 11
0.090 48.99 51.25 8

Re= 82.5
−1.13 65.03 62.90 7 0 51.23 53.01 10
−0.58 51.88 53.31 8 0.13 52.70 54.58 11
−0.41 51.05 52.20 8 0.17 52.70 55.23 11
−0.30 51.05 51.86 9 0.21 54.58 56.00 11
−0.24 50.90 51.84 9 0.24 54.94 56.64 12
−0.13 50.61 52.17 10 0.44 63.85 62.65 13
−0.072 50.61 52.45 10 0.56 67.67 68.81 14

Re= 106
−0.93 65.03 62.18 9 0.095 56.11 55.91 13
−0.74 59.35 59.13 10 0.15 56.64 56.31 14
−0.51 56.88 56.70 11 0.24 56.94 57.02 14
−0.26 56.35 55.39 12 0.37 58.97 58.65 14
−0.14 55.17 55.23 12 0.59 64.85 63.33 15

0 55.20 55.47 13 0.81 78.79 77.32 15
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µ Ta
expt
crit Ta

comp
crit m

comp
crit µ Ta

expt
crit Ta

comp
crit m

comp
crit

Re= 134.75
−0.78 70.47 63.36 12 0.56 57.88 58.99 16
−0.37 60.02 58.81 14 0.65 61.64 60.82 16
−0.26 59.29 58.04 14 0.87 70.03 75.10 15
−0.19 58.61 57.67 14 0.94 76.21 86.55 15
−0.054 57.52 57.09 15

Re= 166
−0.85 77.53 67.65 14 0.14 58.11 56.88 17
−0.67 69.14 64.79 15 0.23 57.97 56.49 17
−0.39 63.94 61.24 16 0.34 57.76 56.24 17
−0.23 63.11 59.60 16 0.48 56.79 56.49 17
−0.15 62.32 58.90 16 0.71 57.17 59.85 16
−0.083 60.52 58.38 16 0.84 67.70 66.67 15

0 60.41 57.75 17 0.96 69.59 80.01 15
0.091 58.29 57.15 17

Re= 244
−0.79 82.50 71.27 18 0.15 59.82 56.69 18
−0.70 74.65 69.52 18 0.29 57.88 55.50 18
−0.39 71.50 63.99 19 0.53 54.82 54.97 17
−0.25 66.94 61.78 19 0.77 54.73 59.02 16
−0.13 64.00 60.05 19 0.93 63.64 68.82 15
−0.058 63.05 59.09 19 1.01 67.82 77.81 14

0 62.38 58.36 19

Re= 330
−0.82 81.94 74.48 21 0.15 61.35 56.53 19
−0.67 79.29 71.05 21 0.27 57.67 55.32 19
−0.35 69.79 64.45 20 0.45 52.96 54.27 18
−0.18 67.29 61.35 20 0.67 50.17 55.48 17
−0.071 65.82 59.58 20 0.80 51.79 58.99 16

0 64.44 58.54 20 0.96 56.35 68.90 15
0 65.26 58.54 20 1.11 61.94 89.43 13
0.079 62.53 57.43 19

Re= 403.5
−0.63 79.65 71.05 22 0.20 60.17 55.87 19
−0.39 75.76 65.70 21 0.72 47.82 56.04 16
−0.29 71.29 63.67 21 0.84 48.85 60.30 16
−0.13 69.59 60.72 20 1.01 55.32 72.65 14

0 66.70 58.55 20 1.24 61.64 96.71 11
0.097 63.64 57.18 20

Table 3. Comparison of computed values of Tacrit to the experimental results
of Mavec (1973) for η =0.77.

larger Re, the difference ∆ at each Re varies nearly monotonically with µ, beginning
with ∆ < 0 for the most negative values of µ, and ending with ∆ > 0 for the most
positive values. Linear least-squares fits of the form ∆ = aµ + b over −0.7 <µ< 0.35
give values of the slope a = 2.6, 3.1, 3.8, 4.3, and 4.7 at Re = 134.75, 166, 244, 330,
and 403.5, respectively, compared to 0.67, 1.7, 1.4, 1.4, 1.3, 1.1, and 0.50 at Re = 24,
33, 49, 63.5, 65.5, 82.5, and 106, respectively. When all µ are included, the slopes are
−8.9, −2.5, 1.4, 6.1, −0.4, 1.2, and 0.2 at the lower Re values, and 6.6, 6.7, 9.2, 14.9,
and 21.7 at the higher values.
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Figure 4. SPF stability boundaries for η = 0.77 and the values of Re (shown adjacent to each
curve) and µ investigated experimentally by Mavec (1973). The dashed line corresponds to
µ= η2.

The computed results presented in table 3 are shown in figure 4 using axes
Ωo(Ro − Ri)

2/ν ≡ µTa and Ωi(Ro − Ri)
2/ν ≡ Ta , as is conventional for Re =0 (cf.

figure 6.2 of DiPrima & Swinney 1985). This representation is useful for assessing the
effects of Re and understanding behaviour near the Rayleigh line (µ= η2). Figure 4
shows that for η =0.77, the value of Ωo(Ro−Ri)

2/ν at which the critical Ωi(Ro − Ri)
2/ν

attains its minimum initially shifts to more negative values as Re increases. At an Re
apparently lying between 49 and 82.5, the location of this minimum shifts towards
positive values of Ωo(Ro − Ri)

2/ν, with the Ωo(Ro − Ri)
2/ν = 0 axis being crossed

between Re = 106 and 134.75. The high-Re plateau behaviour discussed in § § 2.1–2.2 is
reflected in the near-coincidence of the results for Re =330 and 403.5. (Connnection of
the points in figure 4 by third-order splines is responsible for the slight apparent di-
vergence of the curves for Re = 330 and 403.5 at sufficiently positive and negative µ.)

A number of Mavec’s experimental points lie beyond the Rayleigh line (µ = η2).
Thus, on the basis of results in Part 1, for some combinations of µ and Re we might
expect two values of Tacrit, depending on the location of the turning point (Remin)
for η = 0.77 and each µ considered. (With the axes used in figure 4, two values of
Tacrit correspond to a constant-µ straight line intersecting the stability boundary for
a given Re at two different values of Ωo(Ro − Ri)

2/ν.) For Re = 106 and µ = 0.81, for
which table 3 shows Taexpt

crit = 78.79 and Tacomp
crit = 77.32, we computed a second value,

Tacrit = 463. None of Mavec’s results suggest that he encountered two critical values
of Ωo for a single µ, so in all other cases we have computed only the smaller Tacrit

for comparison to his results.

η ≈ 0.95

For η = 0.9497 and 0.959 and seven non-zero Re up to 200, Snyder (1965) measured
critical values of Ωi for fixed values of Ωo, for water in annuli with aspect ratios
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between 285 and 349. The dimensionless results shown in his figures 1 and 2 (η = 0.959)
and figure 3 (η = 0.9497) span a range of negative and positive µ for 0 � Re � 200.
For Re > 0, we have read R

1/2
i Ωi(Ro − Ri)

3/2/ν and R
1/2
i Ωo(Ro − Ri)

3/2/ν from these

figures, and calculated the µ values shown in table 4 from the ratio. Values of Taexpt
crit

shown in table 4 were obtained by multiplying ordinates read from Snyder’s figures
by [(1 − η)/η]1/2. Values of Tacomp

crit and mcrit at each combination of Re, µ, and η are
shown in table 4.

Agreement of our computations with the data of Snyder (1965) is generally excellent.
In 43 out of 79 cases shown in table 4, the difference between Tacomp

crit and Taexpt
crit is

less than 2.5%, the sum of Snyder’s estimates of the systematic (1.5%) and statistical
(1%) errors in his measurements of the critical angular velocity of the inner cylinder.
For 34 combinations of Re and µ, Tacomp

crit and Taexpt
crit agree within 2%. In 20 cases,

agreement is within 1%. These generally small differences between Tacomp
crit and Taexpt

crit

imply that errors in the values of Ta and µ due to our reading of his figures 1–3 are
also small. For 0 < Re � 40, the mean and r.m.s. values of ∆ (−0.41 and 0.43, −0.48
and 0.50, −0.64 and 0.78, and −0.08 and 0.26, for Re = 5, 10, 20, and 40, respectively)
do not exceed 5% of Tacrit. For Re =80, agreement is within 2% for 13 of the 17 µ

values. Even at the highest Re (200), agreement is within 2% at six of the 14 µ

values.
As with the data of Mavec, there appear to be two types of systematic variation in

∆. First, at each Re, |∆| is generally larger at the most positive and negative µ than
at intermediate values. Second, there are Re values for which the variance of ∆ is
much smaller than its r.m.s. For example, for Re =5 and 10, the variance of ∆, 0.017
and 0.021, respectively, is about 4% of the r.m.s. of ∆, strongly suggesting that the
random contribution to the differences is very small compared to the already small
r.m.s. differences. This suggests, at least for Re = 5 and 10, that differences between
experiment and computation are largely systematic. As for Mavec’s data, we have
calculated linear least-squares fits ∆ = aµ+ b to the differences as a function of µ for
each Re. For Re = 5, 10, 20, 40, 80, 120, and 200, the calculated slopes are a = −0.036,
−0.033, −0.20, 0.31, −0.90, −0.95, and −0.036, respectively. (When only data in
the range −1.5 <µ< 0.74 are included, we find a = −0.036, −0.033, 0.10, 0.31, 0.32,
0.95, and 1.3 for the same Reynolds numbers.) The magnitudes of these slopes are
considerably smaller than the corresponding slopes for the η = 0.77 data of Mavec.

Unlike the η = 0.77 case, table 4 shows that Tacomp
crit significantly exceeds Taexpt

crit for

only a few combinations of Re and µ. Specifically, ∆/Taexpt
crit > 0.04 for Re =80

at µ = −1.91 (∆/Taexpt
crit = 0.08), for Re =120 at µ =0.392 (∆/Taexpt

crit = 0.18), and

for Re = 200 at µ = 0.146, 0.293, and 0.417 (∆/Taexpt
crit = 0.05, 0.07, and 0.07,

respectively). The relatively large, isolated discrepancy for Re = 120 at µ =0.392
has no obvious explanation. For Re = 200, ∆ is quite small (|∆| � 0.82) for µ < 0,
increases monotonically to a maximum of 2.36 at µ = 0.417, and falls rapidly to
−5.16 at µ = 0.746. This trend shows that the mechanisms of subcritical and delayed
onset are unimportant for µ < 0, with the latter becoming increasingly significant as
µ increases beyond zero.

4. Discussion
4.1. Implications for interpretation of experiment

As shown in § § 3.1 and 3.2, there is a broad range of Re and µ for which SPF loses
its stability at Tacrit values very close to those predicted by linear theory. Sometimes,
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µ Ta
expt
crit Ta

comp
crit m

comp
crit µ Ta

expt
crit Ta

comp
crit m

comp
crit

Re= 5
−0.738 12.19 11.78 3 0.238 9.628 9.169 0
−0.436 10.17 9.653 1 0.425 10.47 10.01 0
−0.243 9.436 9.026 0 0.668 13.45 12.94 0

0 8.936 8.809 0

Re= 10
−0.731 12.30 11.78 3 0.234 9.790 9.416 1
−0.428 10.37 9.847 1 0.414 10.76 10.22 0
−0.234 9.794 9.243 1 0.656 13.70 13.05 0

0 9.263 9.053 1

Re= 20
−0.924 16.21 15.33 5 0.204 12.08 11.56 1
−0.710 14.10 13.69 4 0.369 13.26 12.38 1
−0.393 12.48 11.86 2 0.620 15.99 15.61 1
−0.220 11.72 11.34 2 0.750 17.87 17.49 1

0 11.35 11.18 1 0.798 22.18 20.37 0

Re= 40
−1.06 16.78 16.30 9 0 14.74 14.79 3
−0.863 17.30 17.01 8 0.157 15.15 15.19 3
−0.631 15.86 15.88 7 0.299 16.28 15.95 2
−0.331 14.94 14.95 5 0.680 19.71 20.11 2
−0.168 14.84 14.73 4

Re= 80
−1.91 23.46 25.50 18 0.117 20.99 20.84 29
−1.46 22.82 22.18 19 0.204 21.67 21.49 31
−1.09 20.40 20.33 20 0.383 23.28 23.45 36
−0.894 19.95 19.69 21 0.531 25.28 26.12 42
−0.687 19.48 19.28 22 0.628 28.65 28.85 48
−0.459 19.40 19.15 23 0.709 32.35 32.23 55
−0.233 19.55 19.40 25 0.823 40.88 40.79 69
−0.119 19.87 19.71 26 0.887 58.58 50.80 80

0 20.14 20.18 28

Re= 120
−1.32 25.39 24.49 30 0.185 25.11 26.08 54
−0.932 24.00 23.39 33 0.392 23.26 28.47 63
−0.755 23.69 23.17 35 0.464 28.92 29.63 67
−0.565 23.63 23.15 38 0.573 31.34 31.90 73
−0.384 23.73 23.36 41 0.673 34.14 34.78 81
−0.195 24.00 23.85 44 0.801 42.06 40.44 92
−0.085 24.27 24.30 47 0.901 58.31 48.68 98

0 24.60 24.74 49

Re= 200
−1.12 29.89 29.42 55 0 30.33 31.15 83
−0.748 29.89 29.17 62 0.146 30.53 32.08 89
−0.595 29.89 29.27 66 0.293 31.01 33.28 95
−0.448 29.79 29.50 69 0.417 32.19 34.55 101
−0.306 29.76 29.86 73 0.520 34.38 35.81 105
−0.150 30.06 30.42 78 0.603 37.71 37.00 109
−0.068 30.27 30.79 81 0.746 44.76 39.60 112

Table 4. Comparison of computed values of Tacrit to the experimental results of Snyder
(1965). Values in bold correspond to η = 0.9497; all other values are for η = 0.9590.



Subcritical and delayed onset in spiral Poiseuille flow 371

however, there are systematic differences. Here, we assess the contributions of the
mechanisms of subcritical and delayed onset to these differences.

For the cases considered in § 2, finite-amplitude instability corresponds to
Taexpt

crit <Tacomp
crit . (For µ>η2, finite-amplitude onset on the upper branch of the

stability boundary (see Part 1) would occur above the linear Tacrit.) To date, little is
known about nonlinear stability of SPF (Joseph & Munson 1970; Joseph 1976)
or even non-rotating annular Poiseuille flow. For the latter, results are limited
to a perturbation analysis for axisymmetric disturbances (Strumolo 1983), and to
computational simulations at three Re (13 000, 15 500, and 20 000) at η = 0.7 with
initial disturbances having one non-zero axial wavenumber (Shapiro, Shtilman &
Tumin 1999). When axial flow between rotating cylinders is exactly a quadratic
function of the radial coordinate (as can be arranged by choosing the relative axial
velocity of the cylinders to exactly cancel the logarithmic term in (2.1c) of Part 1),
Joseph & Munson (1970) have shown that finite-amplitude instability cannot occur for
µ = 1, and argued that this result should carry over approximately to µ �= 1. Based
on what is known about finite-amplitude instability in related flows (e.g. circular
Poiseuille flow), we conjecture that when finite-amplitude instability is possible in
SPF at high Re, the amplitude threshold is sufficiently low for subcritical onset to be
observed routinely.

For µ =0 and 0.2, Takeuchi & Jankowski (1981) found that their experimental
Tacrit values systematically exceeded predictions of linear analysis for Re greater than
about 40. For µ = −0.5, experimental Tacrit values exceeded computed values for all
Re > 0. They suggested that the linear stability analysis appears to be valid beyond
the largest Re (100) at which they compared their computations and experiments.
We note that Taexpt

crit exceeding Tacomp
crit cannot be regarded, by itself, as establishing

the unimportance of finite-amplitude instability at a particular Re, since for the
particular annular aspect ratio used, one of the mechanisms of onset delay might be
the dominant effect, with finite-amplitude instability being observed only at larger
aspect ratios. On the other hand, when Taexpt

crit and Tacomp
crit are nearly identical over a

range of Re, the evidence for absence of finite-amplitude instability is much stronger.
For µ = 0, comparison of the data of Kaye and co-workers to our computations

shows that agreement is generally very good at small Re. As Re increases, Taexpt
crit

initially exceeds Tacomp
crit . (One onset delay mechanism suggested by Takeuchi &

Jankowski, involving a constant-head pump, is not applicable to the experiments
of Kaye and co-workers, for which our results show that dTacrit/dRe � 0 for
0 < Re <Re∗.) As Re increases, Taexpt

crit falls rapidly below the plateau value of Tacomp
crit . It

seems likely that, over some Re range, there is competition between one or more of the
mechanisms of subcritical and delayed onset. At sufficiently large Re, Taexpt

crit − Tacomp
crit

decreases and ultimately passes through zero. The results of Kaye & Elgar show that
at sufficiently high Re, subcritical onset dominates, with onset occurring (at all Ta)
at Re values close to those associated with finite-amplitude instability of plane and
circular Poiseuille flow.

The reports of Kaye & Elgar and Yamada (1962) that Tacrit falls to zero near
Re =1000 are consistent with known finite-amplitude instability in plane Poiseuille
flow (corresponding to η → 1 with no rotation) near Re = 1000 (Carlson, Widnall
& Peeters 1982). Linear analysis would predict that Re → 5772 (Orszag 1971) as
η → 1, consistent with monotonic decrease of the computed ReAP values as η → 1
(figure 5). The results of Kaye & Elgar, showing that Tacrit = 0 near Re =1000 for
η =0.734 and Re =900 for η = 0.820, are consistent with Re values at which finite-
amplitude instability is expected for annular Poiseuille flow. Extrapolation of the Tacrit
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values of Yamada (1961, 1962) to Tacrit = 0 gives an Re value near 1200, much less
than the η → 1 plane Poiseuille non-rotating limit, and comparable to the value for
finite-amplitude instability in that limit. This strongly suggests that finite-amplitude
instability occurred in Yamada’s experiments.

On the other hand, essentially perfect agreement between our computations and the
data of Sorour & Coney for µ =0 and η =0.955 in an annulus of high aspect ratio
( > 570) up to Re = 325 convincingly shows that in their experiments the mechanisms
of subcritical and delayed onset were unimportant. Since the disturbance level in
their experiments, particularly at the entry to the rotating test section, seems to have
been significant, the degree of agreement strongly suggests that either finite-amplitude
instability does not occur for Re � 325, or if it does, the amplitude threshold is quite
high or the range of subcritical Ta is very small. The degree of agreement between
experiment and linear theory provides stronger evidence for the absence of finite-
amplitude instability than any previously available for SPF, and quite likely for any
shear flow.

For µ spanning a range of negative and positive values, agreement between the
data of Snyder (1965) and Mavec (1973) and our computations is excellent over a
wide range of Re and µ. However, even for small Re, there are values of Re and
extreme values of µ for which systematic deviation occurs. Here, we discuss the
implications of the agreement, as well as of the discrepancies, for interpretation of
the experimental data.

Based on generally excellent agreement between Mavec’s experiments and our
computations at almost all ‘intermediate’ µ (−0.70 < µ < 0.35) over 24 � Re � 106,
we conclude that subcritical and delayed onset mechanisms are unimportant in this
regime.

For Mavec’s data at Re = 49 and 63.5, comparison of the mean and r.m.s. values of
∆ =Tacomp

crit − Taexpt
crit to its variance strongly suggests the presence of small systematic

errors, considerably larger than at other Re over 24 � Re � 106. We conjecture, from
the systematically positive ∆ at those two Re and from the stability boundaries
shown in figure 4, that the actual Re was somewhat lower than reported for these two
cases.

For Re � 134.75, comparison of Mavec’s data to our computations, and especially
consideration of the slopes of ∆ = aµ + b, suggests that as Re increases, mechanisms
of onset delay become increasingly important except at the most positive µ, and
that at these large rotation rate ratios, subcritical onset occurs at Tacrit values lying
progressively below the predictions of linear theory as µ and Re increase. Of the
eight combinations of Re � 134.75 and µ for which experimental and computed
Tacrit values agree within 2%, four are at the lowest Re (134.75). At least two of
the remaining four are at values of µ at which the experimental and computational
results ‘cross over’, corresponding to a µ for which the competing effects of subcritical
and delayed onset nearly cancel. This contrasts to the situation at Re = 106, for which
experimental and computed Tacrit values agree within 2% at nine consecutive µ.

Figure 5(a) shows a map of the experimental µ and Re considered by Mavec,
with each symbol corresponding to our assignment of the nature of onset. We note
that there is not a one-to-one correspondence between points for which either linear
theory underpredicts the experimental Tacrit (∆ < 0) and those identified as ‘delayed
onset’, or those for which ∆ > 0 and ‘subcritical onset’. Rather, we have used ∆,
its mean, variance, and r.m.s., and their dependence on Re and µ, to assign onset
at each point. This assignment is somewhat subjective. For example, for Re = 49
and 63.5, we characterize the transition as ‘linear onset’ over a broad range of µ,
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Figure 5. Nature of transition in (µ, Re)-plane for (a) η =0.77 data of Mavec (L/(Ro −Ri) =
160) and (b) η ≈ 0.95 data of Snyder (285 � L/(Ro − Ri) � 349): � linear onset; � subcritical
onset; � delayed onset; � competition between subcritical and delayed onset.

since the small variance of ∆ compared to its mean and r.m.s. values suggests that
consistently positive ∆ are associated with small errors in Re rather than subcritical
onset. For several Re, it appears (as discussed above) that subcritical onset and
onset delay compete with each other, giving ∆ values of opposite sign at consecutive
µ, with magnitudes considerably greater than the low variance of ∆ in the low
and intermediate range of |µ|. These points, which we characterize as ‘competing’,
include several of the high-Re points at which isolated small values of ∆ were
found.

There is a broad range of Re and µ in which subcritical onset is not apparent in the
experiments of Mavec. The onset map suggests that finite-amplitude instability was
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not observed for Re < 106, and at higher Re occurred only at sufficiently positive µ,
with the required µ decreasing with Re. On the other hand, onset is delayed at large
µ even for small Re. At larger Re, competition between the mechanisms of subcritical
and delayed onset seems to occur at rotation rate ratios intermediate between large µ

at which onset is subcritical and smaller µ at which linear theory accurately predicts
onset. For Re � 244, our map suggests that linear onset was not observed in Mavec’s
experiments, being subcritical for sufficiently positive µ, and delayed for smaller µ.
In general, increasing µ at fixed Re leads to a transition from delayed to linear onset,
to competition between the mechanisms of subcritical and delayed onset, and finally
to subcritical onset.

In Snyder’s experiments with η ≈ 0.95, the extremely small variance of ∆ for some
Re suggests that differences between computed and experimental Tacrit values are
largely due to small systematic errors. In particular, we note the 4% variance of the
already small r.m.s. values of ∆ for Re = 5 and 10. As for similar cases in Mavec’s
data, we conjecture that this is associated with a (small) difference between the repor-
ted and actual Re, as discussed above for Mavec’s data at Re = 49 and 63.5, with the
sign (∆ < 0) indicating that the actual Re was larger than reported in these cases.

The generally smaller slopes of the least-squares lines ∆ = aµ + b for Snyder’s
data compared to Mavec’s data suggest that subcritical instability and onset-delaying
mechanisms were less important in Snyder’s experiments, in which the radius ratio
was larger than Mavec’s, as was the annular aspect ratio.

Figure 5(b) shows an onset map for the experiments of Snyder (1965). Compared to
results shown in figure 5(a), the most dramatic difference is the wider range of Re and
µ over which subcritical instability does not occur. The map indicates that subcritical
instability was not observed in Snyder’s experiments for Re < 120, except at one point
(Re = 80, µ = −1.91), where µ assumes its most negative value in the experiments of
Mavec or Snyder. For larger Re, subcritical effects appear to be manifested in a µ

range whose width increases with increasing Re. With the exception of the Re = 80,
µ = −1.91 point, increasing µ at fixed Re leads to a change from linear to subcritical
onset (when Re is high enough), to competition between the mechanisms of subcritical
and delayed onset, and ultimately to significant delay of onset.

Figures 5(a) and 5(b) show a broad qualitative similarity in the regions of the
(µ, Re)-plane in which linear onset of instability in SPF occurred in the experiments
of Mavec and Snyder. In both cases, onset is closely predicted by linear theory up
to at least Re = 166 (200 for Snyder’s experiments) over a significant range of µ. For
Mavec’s η = 0.77 experiments with L/(Ro − Ri) = 160, we judge onset at Re = 166 to
occur by a linear mechanism for −0.083 � µ � 0.84. For Snyder’s experiments with
η ≈ 0.95 and 285 � L/(Ro − Ri) � 349, we judge onset to occur by a linear mechanism
at the highest Re (200) for −1.32 � µ � 0.464 (i.e. at all but the three largest µ values).
At smaller Re, onset appears to be linear for a somewhat wider range of negative µ in
Snyder’s experiments than in Mavec’s. In Mavec’s experiments, subcritical instability
occurs over a progressively broader range of positive µ as Re increases, while in
Snyder’s, with larger radius ratio and aspect ratios, departures from linear onset at
positive µ are associated with delayed onset.

If, to a first approximation, we associate delayed onset with finite aspect ratio
effects, and subcritical onset with the nominal base flow (depending on Re, µ, and
η), then we might conjecture that subcritical onset is less important (e.g. occurs
over a smaller range of Re and µ, or has a higher amplitude threshold, or occurs
over a narrower range of Ta lying below the Tacrit of linear theory) in the higher-η
experiments of Snyder.
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4.2. Relationship to annular Poiseuille flow

As discussed in Part 1, connection of the low-Re Taylor–Couette instability to the
high-Re instability of annular Poiseuille flow had been made prior to the present work
only for µ = 0 and η = 0.95, subject to the limitation of axisymmetric disturbances
(Ng & Turner 1982). As shown in § 2.2, transition for µ = 0 and η = 0.95 actually
occurs from non-axisymmetric centrifugal instability to non-axisymmetric Tollmien–
Schlichting-like instability. As for η = 0.5, transition from centrifugal instability to
the TS-like instability occurs just below Re = ReAP for each combination of µ and η

considered.
For each combination of µ and η, mcrit decreases from its value on the high-Re

plateau to 2 as one passes through Re∗. Beyond Re∗, mcrit is non-increasing, and at
ReAP assumes the values of 1 and 0 for η = 0.77, and 0.95, respectively. The non-
zero mcrit at ReAP for η = 0.77 is at variance with the expectation that the critical
disturbance is axisymmetric as Re approaches ReAP (Ng & Turner 1982, p. 101).

4.3. Relationship to the narrow-gap limit

For µ = 0, we note that the initial range, 0 � Re � Re0, for which mcrit = 0, is
progressively reduced as η → 1, with Re0 = 24, 16, and 8 for η = 0.5, 0.77, and 0.95,
respectively. This suggests that in the narrow-gap limit, the initial range of Re for
which instability sets in as axisymmetric Taylor-like vortices propagating downstream
will be small. The only prior theoretical work accounting for non-axisymmetric
disturbances for µ �= 0 in the narrow-gap limit is that of Chung & Astill (1977),
errors in which have been discussed by Takeuchi & Jankowski and Ng & Turner.

The only experimental work for µ �= 0 in the narrow-gap limit is that of Snyder
(1965), for η ≈ 0.95 over the ranges 0 � Re � 200 and −2 � µ � 0.92, with the upper
bound on µ being approximately the value beyond which circular Couette flow is
linearly stable (Synge 1938). For µ = 0.2, it is evident from points near the µ = 0.2
line in Snyder’s figure 1 that Tacrit increases monotonically with Re over the range
investigated. This is consistent with the trend suggested by our results for η = 0.5
(Part 1) and 0.77 (figure 2a), where we see that as η increases, (a) there is an increase
in the Re beyond which axial shear destabilizes SPF with respect to centrifugal
instability, (b) the magnitude of that destabilization decreases, and (c) the plateau
begins at higher Re. Together with our results for η =0.5 and 0.77, the results of
Snyder suggest that at least for µ = 0.2, axial flow does not reduce the critical Ta for
onset of centrifugal instability in the limit η → 1.

For the Taylor number definition used by Takeuchi & Jankowski and in the present
work, Tacrit vanishes for Re =0 as η → 1. Figure 6 shows the µ = 0 results of § 2 plotted
in terms of a modified Taylor number defined by

T̂a =Ta

(
η

1 − η

)1/2

, (4.1)

the critical value of which approaches
√

1707.762 . . . as η → 1 for Re = 0 and µ = 0.
It appears that the plateau value of T̂a grows without bound as η → 1. Note that
ReAP approaches the plane Poiseuille limit Re = 5772 from above as η → 1. Finally,
we note that mcrit = 0 at ReAP for η = 0.95 is consistent with the expected behaviour
as η → 1, based on the two-dimensionality of the critical TS disturbance in plane
Poiseuille flow.
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5. Conclusions
The complete linear stability boundaries for spiral Poiseuille flow show that for

η = 0.77 and 0.95 and each rotation rate ratio µ<η2 considered, we can connect the
onset of instability for circular Couette flow to the onset of instability in annular
Poiseuille flow. For µ>η2, no instability is possible on a linear basis from Re = 0
up to a turning point beyond which the stability boundary is multi-valued and
SPF is stable in two disjoint Ta ranges. For µ<η2, an axial pressure gradient
stabilizes SPF with respect to centrifugal instability up to high Re, as shown by Ng
& Turner. In each case, Tacrit reaches a plateau before falling precipitously to zero
as Re approaches ReAP, the critical Re for annular Poiseuille flow. The transition
from centrifugal instability at small Re to a shear instability of Tollmien–Schlichting
type occurs at Re∗ (slightly smaller than ReAP), at which the critical azimuthal
wavenumber drops from its value on the high-Re plateau to mcrit = 2 in each case
considered.

Comparison to data for µ = 0 shows that for each η and aspect ratio, there is an
Re range in which subcritical instability does not occur, and for which the annulus
is long enough to allow development of detectable secondary flow. For a narrow-gap
(η = 0.955) annulus of large aspect ratio ( > 570), agreement between experiment and
computation is essentially exact up to Re =325, showing that neither finite-amplitude
instability nor any other type of subcritical onset occurs over a wide range of Re
when the outer cylinder is fixed. For η = 0.77 and η ≈ 0.95, comparison to data up to
Re > 100 suggests existence of a substantial range of µ and Re in which subcritical
onset does not occur.
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