Computational assessment of subcritical and delayed onset in spiral Poiseuille flow experiments

By DAVID L. COTRELL \dagger, SARMA L. RANI \ddagger
AND ARNE J. PEARLSTEIN
Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801, USA

(Received 29 April 2003 and in revised form 30 January 2004)
For spiral Poiseuille flow with radius ratios $\eta \equiv R_{i} / R_{o}=0.77$ and 0.95 , we have computed complete linear stability boundaries, where R_{i} and R_{o} are the inner and outer cylinder radii, respectively. The analysis accounts for arbitrary disturbances of infinitesimal amplitude over the entire range of Reynolds numbers $R e$ for which the flow is stable for some range of Taylor number $T a$, and extends previous work to several non-zero rotation rate ratios $\mu \equiv \Omega_{o} / \Omega_{i}$, where Ω_{i} and Ω_{o} are the (signed) angular speeds. For each combination of μ and η, there is a wide range of $R e$ for which the critical $T a$ is nearly independent of $R e$, followed by a precipitous drop to $T a=0$ at the $R e$ at which non-rotating annular Poiseuille flow becomes unstable with respect to a Tollmien-Schlichting-like disturbance. Comparison is also made to a wealth of experimental data for the onset of instability. For $R e>0$, we compute critical values of $T a$ for most of the $\mu=0$ data, and for all of the non-zero- μ data. For $\mu=0$ and $\eta=0.955$, agreement with data from an annulus with aspect ratio (length divided by gap) greater than 570 is within 3.2% for $R e \leqslant 325$ (based on the gap and mean axial speed), strongly suggesting that no finite-amplitude instability occurs over this range of $R e$. At higher $R e$, onset is delayed, with experimental values of $T a_{\text {crit }}$ exceeding computed values. For $\mu=0$ and smaller η, comparison to experiment (with smaller aspect ratios) at low $R e$ is slightly less good. For $\eta=0.77$ and a range of μ, agreement with experiment is very good for $R e<135$ except at the most positive or negative μ (where $T a_{\text {crit }}^{\text {expt }}>T a_{\text {crit }}^{\text {comp }}$), whereas for $R e \geqslant 166, T a_{\text {crit }}^{\text {expt }}>T a_{\text {crit }}^{\text {comp }}$ for all but the most positive μ. For $\eta=0.9497$ and 0.959 and all but the most extreme values of μ, agreement is excellent (generally within 2%) up to the largest $R e$ considered experimentally (200), again suggesting that finite-amplitude instability is unimportant.

1. Introduction

Cotrell \& Pearlstein (2004), in a companion paper hereinafter referred to as Part 1, present complete stability boundaries for spiral Poiseuille flow (SPF) for the radius ratio $\eta \equiv R_{i} / R_{o}=0.5$ and several rotation rate ratios $\mu \equiv \Omega_{o} / \Omega_{i}$ over the entire range of Reynolds number $R e \equiv \bar{V}_{Z}\left(R_{o}-R_{i}\right) / \nu$ for which the flow is linearly stable at any Taylor number $T a \equiv \Omega_{i}\left(R_{o}-R_{i}\right)^{2} / \nu$, where v and \bar{V}_{Z} are the kinematic viscosity and

[^0]the mean of the axial component of the base-flow velocity, and Ω_{i} and Ω_{o} are the (signed) angular velocities of the inner and outer cylinders, whose radii are R_{i} and R_{o}, respectively. Their work, for the η values in the experiments and computations of Takeuchi \& Jankowski (1981) and computations of Meseguer \& Marques (2002), extends the $R e$ range investigated eightyfold, and shows how the $R e=0$ centrifugal instability connects to a high-Re Tollmien-Schlichting (TS)-like instability. The results of Part 1 also establish that when μ exceeds the Rayleigh limit $\mu=\eta^{2}$, there is an Re range in which SPF is linearly stable for all $T a$, and that when $\mu \neq 1$, there is a range in which two critical $T a$ values exist for each $R e$.

Contemporaneous to the work of Takeuchi \& Jankowski, Ng \& Turner (1982) reported computations for $\mu=0$, considering arbitrary infintesimal disturbances over $0 \leqslant R e \leqslant 6000$ for $\eta=0.77$ and 0.95 , and axisymmetric disturbances up to $R e=7739.5$ for $\eta=0.95$. For both radius ratios, the critical Taylor number, Ta crit, increases with Re before reaching a broad plateau. For $\eta=0.95$, the $T a$ at which SPF becomes unstable with respect to axisymmetric disturbances was shown to decrease rapidly beyond $R e=6000$. Their results agree well with the $\mu=0$ data of Mavec (1973) up to $R e=400$ for $\eta=0.77$, and $\operatorname{Snyder}(1962,1965)$ up to $R e=200$ for $\eta \approx 0.95$.

Here, for the radius ratios of $\mathrm{Ng} \&$ Turner, which are equal or close to those for most of the experimental work, we compute complete stability boundaries at several μ, including the $\mu=0$ cases studied by $\mathrm{Ng} \&$ Turner. For $R e>0$, we also present results for most of the combinations of $R e$ and η for the $\mu=0$ data (Kaye \& Elgar 1958; Becker \& Kaye 1962; Sorour 1977; Gravas \& Martin 1978; Sorour \& Coney 1979; Greaves, Grosvenor \& Martin 1983), and all combinations of $R e$ and η for $\mu \neq 0$ (Snyder 1965; Mavec 1973).

The stability boundaries extend the earlier work of $\mathrm{Ng} \&$ Turner for $\eta=0.77$ and 0.95 by accounting for arbitrary disturbances of infinitesimal amplitude over the full Re range of the linear stability boundary. We show that in the only SPF case ($\mu=0$, $\eta=0.95$) for which a connection of the $R e=0$ centrifugal instability to the high- $R e$ shear instability had been made ($\mathrm{Ng} \&$ Turner 1982), transition occurs from a nonaxisymmetric centrifugal instability to a non-axisymmetric TS-like instability, at an $R e$ in the range where $\mathrm{Ng} \&$ Turner considered only axisymmetric disturbances.

Takeuchi \& Jankowski and $\mathrm{Ng} \&$ Turner noted that beyond some μ-dependent Re value, experimental $T a_{\text {crit }}$ values found by flow visualization lie above critical values computed by linear stability theory, to an extent that increases with Re. Takeuchi \& Jankowski concluded that "the linear theory has an even greater range of applicability than demonstrated here," and proposed two mechanisms for systematic underprediction of $T a_{\text {crit }}$ (or 'delayed onset') at higher $R e$. The first is associated with experimental annuli insufficiently long to allow secondary flow to develop to detectable amplitudes. The second pertains to experiments in which $\mathrm{d} T a_{\text {crit }} / \mathrm{d} R e<0$ using a constant-head pump, in which case formation of weak vortical structures would have the effect of reducing the mean axial velocity. 'Delayed onset' might also be associated with instability of an incompletely developed 'base flow', due to entrance effects. We use 'subcritical onset' to refer to onset below the critical Ta due to any reason, including 'finite-amplitude' disturbances having an amplitude threshold, as well as instability associated with an incompletely developed base flow at a Ta below that predicted for the fully developed base flow.

Comparison to experimental data allows us to draw some conclusions about the range of $R e, \mu$, and η for which linear stability analysis is valid, and about the effects of annulus aspect ratio $L /\left(R_{o}-R_{i}\right)$ on the apparent critical $T a$, where L is the annulus length.

Essentially perfect agreement between our results and the $\mu=0$ data of Sorour \& Coney at $\eta=0.955$ and the $\mu=0$ and $\mu \neq 0$ data of Mavec (1973) at $\eta=0.77$ and Snyder (1965) at $\eta \approx 0.95$ shows that over a broad range of $R e, \mu$, and η, finite-amplitude instability does not occur, and that onset delay mechanisms are also unimportant. Thus, for at least some combinations of μ and η, it is likely that instability sets in through infinitesimal disturbances up to $R e$ in excess of several hundred. The results also allow us to identify regimes in which either subcritical or delayed onset occurs.

Numerical methods were discussed in Part 1. The remainder of the present paper is organized as follows. In $\S 2$, complete stability boundaries for SPF are presented for $\eta=0.77$ and 0.95 and several values of μ. In $\S 3$, we present results for specific experimental combinations of $R e, \mu$, and η, for which no previous comparison to theory has been made, along with detailed comparison to data and discussion of implications for interpretation of data. Additional discussion follows in $\S 4$, and some conclusions are presented in $\S 5$.

2. Complete stability boundaries

For the radius ratios $\eta(0.77$ and 0.95$)$ considered by $\mathrm{Ng} \&$ Turner, we report complete linear stability boundaries in the ($R e, T a$)-plane at several values of the rotation rate ratio μ, accounting for arbitrary three-dimensional disturbances of infinitesimal amplitude. Convergence tests, described in Part I for $\eta=0.5$, were performed for $\eta=0.77$ and 0.95 at each μ. In general, the number of radial expansion functions required for convergence decreases with increasing η. Except where otherwise indicated, our results are in excellent agreement with those tabulated by $\mathrm{Ng} \&$ Turner over the $R e$ ranges they investigated. Our results cover the entire range of $R e$ for which SPF is linearly stable, from $R e=0$ (the circular Couette limit) to $R e_{A P}$ (beyond which SPF is unstable for all Ta, corresponding to onset of TS-like instability in non-rotating annular Poiseuille flow). We note that $R e_{A P}$ is independent of μ, since it corresponds to the non-rotating limit.

2.1. Stability boundary for $\eta=0.77$

For $\mu=0$ and $\eta=0.77, \mathrm{Ng}$ \& Turner accounted for axisymmetric and nonaxisymmetric disturbances up to $R e=6000$. As discussed in $\S 3$ of Part 1 in the context of code validation, comparison to their results shows excellent agreement over that range. At higher $R e$, figure $1(a)$ shows that $T a_{\text {crit }}$ continues on a plateau $\left(T a_{\text {crit }}=58.6\right)$ until the transition at $R e^{*}=8677$, and falls rapidly to zero over the range $R e^{*}<R e \leqslant R e_{A P}=8883.3$. The value of $R e_{A P}$ is in good agreement with previous graphical results (Mahadevan \& Lilley 1977; Garg 1980) for the stability of nonrotating annular Poiseuille flow.

There are qualitative as well as quantitative differences between the $\eta=0.5$ and 0.77 cases. For $\eta=0.77$, figure $1(a)$ shows that $T a_{\text {crit }}$ increases with $R e$ up to $R e \approx 200$. The stabilization by axial flow over the entire range of centrifugal instability contrasts with the $\eta=0.5$ case, where increasing $R e$ stabilized and destabilized SPF in different parts of the pre-plateau range $10<R e<400$. For $\eta=0.77$, $T a_{\text {crit }}$ is nearly constant in a plateau range $(200<\operatorname{Re}<8000)$ that starts at smaller $R e$ than for $\eta=0.5$. The value of $R e_{A P}$ (8883.3) is also smaller than that (10359) for $\eta=0.5$. The dependence of $R e_{A P}$ on η is part of a systematic variation from $R e_{A P}=5772$ as $\eta \rightarrow 1$ (see $\S 4.1$) to $R e_{A P} \rightarrow \infty$ as $\eta \rightarrow \hat{\eta}$ from above, where $\hat{\eta}<0.15$ is the minimum η for which annular Poiseuille flow is unstable (Mahadevan \& Lilley 1977; Garg 1980).

Figure 1. For $\mu=0$ and $\eta=0.77$: (a) critical $T a$, (b) critical m, (c) critical k, (d) critical c versus $R e$.

As for $\eta=0.5$, figure $1(b)$ shows that $m_{\text {crit }}$ increases over $0 \leqslant R e \leqslant R e^{*}$ by unit steps. Our results agree with tabulated values of $\mathrm{Ng} \&$ Turner except at $R e=300$ and 500 where, as discussed in Part 1, we find critical azimuthal wavenumbers $m_{\text {crit }}=19$ and 20 , respectively, in contrast to their values of 20 and 21 , apparently due to our tighter control of convergence. Figure $1(b)$ shows that $m_{\text {crit }}=21$ over much of the high- $R e$ plateau, compared to a maximum $m_{\text {crit }}=7$ for $\eta=0.5$. As $R e$ passes through $R e^{*}, m_{\text {crit }}$ decreases abruptly from 21 to 2 . On the TS-like branch, $m_{\text {crit }}$ suffers a final step decrease to 1 , its value at $R e_{A P}$. This contrasts to the constant $m_{\text {crit }}=2$ on the TS-like branch for $\eta=0.5$.

As for $\eta=0.5$, figures $1(b)$ and $1(c)$ show that the discontinuities of the critical axial wavenumber $k_{\text {crit }}$ occur at $R e$ values at which $m_{\text {crit }}$ jumps, as described by Ng \& Turner. There is again an $\operatorname{Re}(\approx 42)$ below which $k_{\text {crit }}$ increases monotonically with Re for each $m_{\text {crit }}$, and above which $k_{\text {crit }}$ decreases monotonically with $R e$ for each $m_{\text {crit }}$. We note that $k_{\text {crit }}$ again decreases as $R e$ approaches $R e^{*}$ from below, as found for $\eta=0.5$.

For $\eta=0.77$, figure $1(d)$ shows the piecewise-continuous $R e$ dependence of the critical wave speed $c_{\text {crit }}$. Our computed $c_{\text {crit }}$ values are in excellent agreement with those tabulated by $\mathrm{Ng} \&$ Turner (1982) at their $18 R e$ values in the range $0.01 \leqslant R e \leqslant 6000$, except at $R e=300$ and 500 , where our $m_{\text {crit }}$ values differ from theirs by 1 . As for $\eta=0.5$, the almost constant $c_{\text {crit }}$ when $m_{\text {crit }}=0$ corresponds to a dimensional frequency increasing nearly linearly from zero as \bar{V}_{Z} increases. For each $m_{\text {crit }}<15, c_{\text {crit }}$ decreases monotonically with $R e$, while for $m_{\text {crit }} \geqslant 15, c_{\text {crit }}$ increases piecewise continuously up to
$m_{\text {crit }}=21$. This contrasts with the $\eta=0.5$ results, where $c_{\text {crit }}$ decreased monotonically with Re for each $m_{\text {crit }}$. For $800<\operatorname{Re} \leqslant \operatorname{Re} e^{*}\left(m_{c r i t}=21\right), c_{c r i t}$ remains nearly constant $\left(c_{c r i t} \approx 2.36\right)$. As $R e$ passes through $R e^{*}, c_{\text {crit }}$ decreases abruptly to about 0.39 , and then decreases slightly to its $T a=0$ value of 0.38 as $R e$ increases from $R e^{*}$ to $R e_{A P}$.

The stair-step behaviour of $m_{\text {crit }}$ and the associated discontinuous dependence of $k_{\text {crit }}$ and $c_{\text {crit }}$ on Re indicate that $T a_{\text {crit }}$ is a continuous but only piecewise-differentiable function of $R e$. That the slope discontinuities are less apparent than for $\eta=0.5$ reflects the fact that the values of $m_{\text {crit }}$ are considerably larger for $\eta=0.77$, so that $(m+1) / m$ and $(m+1)^{2} / m^{2}$, the ratios of consecutive m-dependent terms in the disturbance equations, are closer to unity at the larger η. The step 'width' (i.e. the Re range for which $m_{\text {crit }}$ is constant) is considerably smaller for $\eta=0.77$ than for $\eta=0.5$, corresponding to the larger range of critical m for $\eta=0.77\left(0 \leqslant m_{\text {crit }} \leqslant 21\right)$ than for $\eta=0.5\left(0 \leqslant m_{\text {crit }} \leqslant 7\right)$.

For $\mu=0.2$ and $\eta=0.77$, figure $2(a)$ shows that $T a_{\text {crit }}$ increases monotonically with $R e$ from 28.90 at $R e=0$, nearly doubling to a maximum of 56.78 near $R e=115$, and decreases slightly to a plateau value of about 55.6 for $R e$ up to $R e^{*}$. The critical m (not shown) increases to 20 in unit steps for $0 \leqslant R e \leqslant 900$, and remains constant for $900 \leqslant R e<R e^{*}=8712$. As one passes through $R e^{*}, m_{\text {crit }}$ jumps from 20 to 2 . As $T a$ decreases below about $10, m_{\text {crit }}$ on the nearly vertical TS-like branch again decreases from 2 to 1 , the value it maintains all the way to $R e_{A P}=8883.3$, where $T a_{\text {crit }}=0$.

The critical k (also not shown) increases piecewise continuously with $R e$ until reaching a global maximum near $R e=60$, beyond which it decreases sharply until $R e^{*}$. The $R e$ variation of $k_{\text {crit }}$ is similar to that found for $\eta=0.5$ and $\mu=0.2$. The dependence of $c_{\text {crit }}$ on $R e$ is very similar to that for $\mu=0$.

For $\mu=-0.5$, the $\eta=0.5$ and 0.77 stability boundaries differ significantly. First, figure $2(b)$ shows that for $\eta=0.77$, SPF is stabilized as $R e$ increases, with $T a_{\text {crit }}$ increasing monotonically from its $R e=0$ value of 32.83 to about 69 on a broad plateau between about $R e=700$ and the drop at $R e^{*}=8579$. This contrasts with the $\eta=0.5$ case, where SPF is alternately destabilized and stabilized for $0<R e<1000$. Second, for $\eta=0.77$, the nearly constant $T a_{\text {crit }}$ on the plateau (≈ 69) is greater than the $R e=0$ value, unlike the $\eta=0.5$ case, for which $T a_{\text {crit }}$ on the plateau lies below the $R e=0$ value. Finally, the scalloped behaviour for $\eta=0.77$ is less pronounced than for $\eta=0.5$.

As for $\eta=0.5$, the computed $m_{\text {crit }}$ (not shown) increases in unit steps for $R e<R e^{*}$, with $m_{\text {crit }}=0$ up to $R e \approx 4$, and onset through non-axisymmetric disturbances ($m_{\text {crit }}$ up to 24) at higher $R e$. We compute $m_{\text {crit }}=23$ and 24 over relatively wide ranges on the high- $R e$ plateau. As $R e$ passes through $R e^{*}, m_{\text {crit }}$ jumps from 24 to 2 . For $R e^{*}<R e<R e_{A P}, m_{\text {crit }}$ again decreases from 2 to 1 . The piecewise-continuous dependence of $k_{\text {crit }}$ and $c_{\text {crit }}$ on $R e$ is qualitatively similar to that for $\eta=0.5$.

2.2. Stability boundaries for $\eta=0.95$

For $\eta=0.95$ and $\mu=0, \mathrm{Ng} \&$ Turner computed $T a_{\text {crit }}$ for $0 \leqslant R e \leqslant 6000$, and the $T a$ at which SPF would be destabilized by axisymmetric disturbances for $6000 \leqslant R e \leqslant 7739.5$. We have shown that $R e_{A P}$ is indeed 7739.5 (where $m_{\text {crit }}=0$), and completed the stability boundary by considering non-axisymmetric disturbances up to that Re. Comparison to the results of $\mathrm{Ng} \&$ Turner over $0 \leqslant R e \leqslant 6000$ (see Part 1) is excellent. For $R e>6000$, our results agree with theirs only in a very narrow range just below $R e_{A P}=7739.5$, in which $m_{\text {crit }}$ is actually zero. In particular, at $R e=7000, \mathrm{Ng} \&$ Turner report a Taylor number for the onset of axisymmetric

Figure 2. Critical $T a$ versus $R e$ for $\eta=0.77$: (a) $\mu=0.2$, (b) $\mu=-0.5$.
instability which, using the present scaling, corresponds to $T a=367.68$, as opposed to our value of 47.56 (for $m_{\text {crit }}=149$).

For $\eta=0.95$, the stability boundary (figure 3) is qualitatively similar to that for $\eta=0.77$, with the nearly constant $T a_{\text {crit }}(\approx 47)$ on the high-Re plateau ($1000<R e<7716$) being greater than at $R e=0$. For $\eta=0.95, T a_{\text {crit }}$ is smaller than for $\eta=0.5$ and 0.77 .

As for $\eta=0.5$ and $0.77, m_{\text {crit }}$ (not shown) increases by unit steps (from 0 to 149) over $0 \leqslant R e<R e^{*}$. At $R e^{*}, m_{\text {crit }}$ jumps from 149 to 2 . For $R e^{*} \leqslant R e \leqslant R e_{A P}, m_{\text {crit }}$ decreases from 2 to 1 to 0 , its value at $R e_{A P}$. Transition from $m_{\text {crit }}=1$ to 0 occurs in the range $7737.55<R e<7739.22$, so that $m_{\text {crit }} \neq 0$ for $6000 \leqslant R e \leqslant 7737.55$, leading to the differences between our $T a_{\text {crit }}$ values and those of $\mathrm{Ng} \&$ Turner in the latter range.

Figure 3. Critical Ta versus $R e$ for $\mu=0$ and $\eta=0.95$.

As $R e$ increases from zero to about $54, k_{\text {crit }}$ increases piecewise monotonically. Beyond $R e=54, k_{\text {crit }}$ decreases monotonically with $R e$ over each range of constant $m_{\text {crit }}$. The maximum $k_{\text {crit }}$ occurs near $R e=120$. Again, there is excellent agreement between our $m_{\text {crit }}$ values and those of $\mathrm{Ng} \&$ Turner for $R e \leqslant 6000$. For $\eta=0.95$, our $k_{\text {crit }}$ and $c_{\text {crit }}$ values are essentially identical to theirs over that range, except at $R e=10,100$, and 2000, where differences in $c_{\text {crit }}$ are due to unit differences in $m_{\text {crit }}$. The dependence of $k_{\text {crit }}$ and $c_{c r i t}$ on $R e$ is qualitatively similar to that for $\eta=0.5$ and 0.77 .

As discussed for $\eta=0.77$, the narrowness of the $R e$ ranges over which $m_{\text {crit }}$ is constant, as well as the size of $m_{\text {crit }}$, contribute to the apparent smoothness of the stability boundary over the entire range of centrifugal instability, and of the $k_{\text {crit }}$ and $c_{\text {crit }}$ plots at high $R e$. For $\eta=0.95$, the constant $-m_{\text {crit }}$ ranges of $R e$ are so narrow, and $m_{\text {crit }}$ is so large, that discontinuities in $k_{\text {crit }}$ and $c_{\text {crit }}$ are not graphically apparent beyond about $R e=80$ (corresponding to $m_{\text {crit }} \approx 25$). This is a consequence of the fact that for the centrifugal instability, $m_{\text {crit }}$ grows rapidly as $\eta \rightarrow 1$ and behaves much like a continuous wavenumber. We also note that the $m_{\text {crit }}$ values are fully resolved. Inadequate resolution (particularly use of insufficiently small tolerances for the wavenumber and $T a$ iterations) can lead to spurious non-monotonic variation in the computed $m_{\text {crit }}$ values, since the minima of neutral curves for large m occur at extremely similar $T a$.

3. Comparison to experiment

For $\mu=-0.5,0$, and 0.2 , Takeuchi \& Jankowski compared their computed and experimental results at $\eta=0.5$ over $0 \leqslant R e \leqslant 100$. For $\mu=0, \mathrm{Ng} \&$ Turner compared their computations at $\eta=0.77$ to data of Nagib (1972) and Mavec (1973) up to $R e=400$ at the same η, and computations at $\eta=0.95$ to $\eta=0.959$ data of Snyder (1962, 1965) up to $R e=200$. These comparisons showed generally good agreement for small $R e$.

Authors	η	$R e$	$T a_{\text {crit }}^{\text {expt }}$	Ta crit ${ }_{\text {comp }}$
$\begin{aligned} & \text { Kaye \& Elgar (1958) } \\ & L /\left(R_{o}-R_{i}\right)=114 \end{aligned}$	0.734	0	(53.5) 29.6	30.27
		30.91	(85.1) 47.1	39.70
		47.27	(102) 56.6	49.09
		76.36	(112) 61.9	57.49
		115.2	(114) 63.3	60.65
		142.4	(117) 64.6	61.31
		193.9	(119) 66.0	61.60
		263.6	(119) 66.0	61.61
		333.3	(125) 69.3	61.56
		401.8	(128) 71.1	61.56
		551.5	(117) 64.6	61.48
Becker \& Kaye (1962)$L /\left(R_{o}-R_{i}\right) \approx 172$	0.8076	0	(1930) 20.3	22.97
		26.5	(2620) 23.6	28.48
		55	(7000) 38.6	41.05
		111	(10900) 48.2	50.86
		157.5	(16800) 59.8	53.43
		301.5	(16800) 59.8	55.29
		526.5	(20700) 66.4	55.72
		796	(21 300) 67.4	55.81

Table 1. Comparison of experimental and computed values of $T a_{\text {crit }}$ for $\mu=0$. Parentheses denote values of differently defined Taylor numbers read from figures of other authors.

Here, we consider data for which no comparison to computation has been made, including data at higher Re and larger $|\mu|$ than considered by Takeuchi \& Jankowski and $\mathrm{Ng} \&$ Turner. Results for $R e$ and η used in the $\mu=0$ experiments are shown in §3.1. In §3.2, computational results are presented, and detailed comparisons are made to data, for all μ in the $R e>0$ experiments of Mavec (1973) for $\eta=0.77$ and Snyder (1965) for $\eta=0.9497$ and 0.9590 . Unless identified by uppercase superscript, Reynolds and Taylor numbers of other authors are reported using our definitions.

3.1. Comparison to previous experimental work $(\mu=0)$

Critical Taylor numbers

Kaye \& Elgar (1958) studied stability of SPF using smoke visualization and hotwire anemometry for $\eta=0.734$ and $0.820\left(L /\left(R_{o}-R_{i}\right)=114\right.$ and 186 , respectively). For $R e=0$, the critical rotation rate was said to agree with linear theory to within 1% for $\eta=0.734$; no comparison was given for $\eta=0.820$. In both cases, $T a_{\text {crit }}$ initially increased with $R e$, reaching a maximum between $R e=400$ and 550 for $\eta=0.734$, and between 350 and 400 for $\eta=0.820$. For larger $R e, T a_{\text {crit }}$ decreased monotonically and nearly linearly to zero at $R e$ values near 1000 and 900 for $\eta=0.734$ and 0.820 , respectively. For $\eta=0.734$, table 1 shows the 11 smallest $R e$ values read from figure 13 of Kaye \& Elgar, along with their corresponding critical Taylor numbers $T a_{c r i t}^{K E}$ (in parentheses). Also shown are values of $T a_{\text {crit }}^{\text {comp }}$ corresponding to each $R e$, and values of $T a_{\text {crit }}^{\text {expt }}=T a_{\text {crit }}^{K E}[2(1+\eta) /(1-\eta)]^{1 / 2}$ calculated from the reported Taylor numbers. Over the $R e$ range shown in table 1, experimental and computed results are in generally good agreement. The difference (2%) between the experimental and computed $T a_{\text {crit }}$ values at $R e=0$ is comparable to the 1% difference between the experimental critical angular velocity and 'the theoretical value predicted by Taylor's theory' cited by Kaye \& Elgar, and provides a measure of the reading error in $T a^{K E}$. For the larger Re shown, $T a_{\text {crit }}^{\text {expt }}$ values lie $4-20 \%$ above $T a_{\text {crit }}^{\text {comp }}$. In the $R e$ range where $T a_{\text {crit }}^{\text {comp }}$ exhibits
plateau behaviour, $T a_{\text {crit }}^{\text {ext }}$ increases slowly until reaching a maximum at some $R e$ between 400 and 550, beyond which it decreases. For Re values in figure 13 of Kaye \& Elgar larger than shown in table 1, Ta cxit decreases to zero near $R e=1000$, while $T a_{\text {crit }}^{\text {comp }}$ maintains a plateau value near 61.5 , ultimately falling off rapidly to zero near $R e=10^{4}$ via a TS-like instability. Implications of this comparison for interpretation of these experimental results, and similar experimental results for $\eta=0.820$ (figure 14 of Kaye \& Elgar), are discussed in §4.1.

For $\mu=0$, Yamada $(1961,1962)$ obtained qualitatively similar results for $\eta=0.971$, 0.981 , and 0.987 . For a number of $R e$ values between 0 and 1100 , he reported critical dimensionless rotation rates at which either the ratio of the torque coefficient to its base-flow value (Yamada 1961, figure 16) or the dimensionless axial pressure drop (Yamada 1962, figure 18) increased 'sharply'. His results, while differing somewhat among the small-gap radius ratios considered and between the two onset diagnostics, generally showed that $T a_{\text {crit }}$ is a unimodal function of $R e$, and reaches its maximum in the range $400 \leqslant R e \leqslant 700$. Beyond the maximum, $T a_{\text {crit }}$ values reported for both diagnostics decreased rapidly with $R e$. For example, at $\eta=0.987$, the reported $T a_{\text {crit }}$ decreased by about 70% between its maximum near $R e=650$ and the largest $R e$ for which Yamada reported results, 1100 . For each η, extrapolation of the reported critical Taylor numbers to zero (i.e. the annular Poiseuille limit) gives an intercept near $R e=1200$.

For $\mu=0$ and $\eta \approx 0.81^{\dagger}$, heat transfer measurements by Becker \& Kaye (1962) showed that the ratio of the Nusselt number to its base-flow value undergoes a well-defined transition at a $T a_{\text {crit }}$ that increases with $R e$ over $0 \leqslant R e \leqslant 1430$. (Beyond $R e=1430$, no clear transition is evident.) At the eight smallest Reynolds numbers they considered, our table 1 shows the Taylor numbers $T a_{\text {crit }}^{B K}$ (in parentheses, read from their figure 4, and thought to be accurate within one or two units in the third significant figure) at onset, Ta crit $=\left[2 T a_{\text {crit }}^{B K}(1-\eta) /(1+\eta)\right]^{1 / 2}$, and $T a_{\text {crit }}^{\text {comp }}$ computed from our linear analysis at the same η. (Although onset is quite distinct at $R e=1007.5$ and 1430, Nusselt numbers before onset at these two Re differed from the nominal base-flow values by about 10% and 50%, respectively. Note also that the Taylor number used by Kaye \& Elgar differs from that of Becker \& Kaye, and that the Reynolds number used by Kaye and co-workers differs from ours by a factor of 2.) To calculate $T a_{\text {crit }}^{\text {expt }}$ from $T a_{\text {crit }}^{B K}$, we used $\eta=0.8076$, the mean of the η values corresponding to the radii and gap given by Becker \& Kaye.

In general, our results agree well with those of Becker \& Kaye. At the four smallest $R e$, the experimental $T a_{\text {crit }}$ values lie 6-17\% below linear stability predictions, while at the next four $R e$, the experimental values are $11-20 \%$ higher than predicted. The latter discrepancy is consistent with inadequate axial development length for the disturbance flow in the apparatus $\left(L /\left(R_{o}-R_{i}\right) \approx 172\right)$ of Becker \& Kaye, identified by Takeuchi \& Jankowski as an explanation for a similar discrepancy between their experimental results (with $L /\left(R_{o}-R_{i}\right) \approx 115$) and their own computations. Since $\mathrm{d} T a_{\text {crit }} / \mathrm{d} R e \geqslant 0$ (see table 1) up to $R e=R e^{*}$ for $\eta \geqslant 0.77$ (see also figures $1 a$ and 3), the alternative constant-head mechanism proposed by Takeuchi \& Jankowski is not applicable in this case.

Gravas \& Martin (1978) used hot-wire anemometry to investigate onset of secondary flow at $\mu=0$ for $\eta=0.576,0.81$, and 0.9 over $43 \leqslant R e \leqslant 1000$. For each η,

[^1]$T a_{\text {crit }}$ increased monotonically with $R e$. Here, we compare our results for the similar radius ratios of $0.5,0.77$, and 0.95 , as well as computations performed at their Re and η values.

The $\eta=0.81$ and 0.9 results of Gravas \& Martin are in general qualitative agreement with our $\eta=0.77$ and 0.95 computations, with the experimental $T a_{\text {crit }}$ plateaux being less well-defined. At $\eta=0.576$, however, there is no evidence of the plateau predicted for $\eta=0.5$ (figure $1 a$ of Part 1). Computations at $\eta=0.576$ show that differences are not due to different experimental and computational radius ratios, with $T a_{\text {crit }}^{\text {comp }}$ decreasing monotonically with $R e$ over the same range, consistent with results for $\eta=$ 0.5 , whereas $T a_{\text {crit }}^{\text {ext }}$ increases monotonically with $R e$ over $70 \leqslant \operatorname{Re} \leqslant 255$ (see figure 5 of Gravas \& Martin). Some of this discrepancy might be associated with annuli of small aspect ratio $L /\left(R_{o}-R_{i}\right)$ (between 32 and 175 in the experiments of Gravas \& Martin), in which vortical structures have insufficient opportunity to develop to a detectable amplitude. Significant geometric imperfection (i.e. axial and azimuthal variations of the gap), as later discussed by Greaves et al. (1983) might also be important.

For $\mu=0$, Sorour (1977) and Sorour \& Coney (1979) used hot-wire anemometry to determine $T a_{\text {crit }}$ for $\eta=0.8$ over $26 \leqslant R e \leqslant 468$ and for $\eta=0.955$ over $26.4 \leqslant R e \leqslant$ 595. For each $R e$, Sorour \& Coney fitted a curve to critical values of $T a^{S C}=$ $2 T a^{2} \eta^{2} /\left(1-\eta^{2}\right)$ at nine uniformly spaced radial locations in the annular gap. Table 2 shows in parentheses the minimum $T a^{S C}$ on that curve as read from either figure 1 of Sorour \& Coney or similar figures of Sorour, along with values of $T a_{\text {crit }}^{\text {expt }}$ calculated from $T a^{S C}$ using the corresponding η, and computed values $T a_{\text {crit }}^{c o m p}$. (We note that the values of $m_{\text {crit }}$ at $\eta=0.95$ and 0.955 differ for most $R e$, so that even for these very similar radius ratios, we have performed specific computations for the experimental η.) Parenthetical values of $T a^{S C}$ up to 10^{4} are thought to be correctly read to three significant figures, while larger values are thought to be in error by no more than one or two units in the fourth significant figure.

We first consider the $\eta=0.955$ case, for which the aspect ratio is more than four times its $\eta=0.8$ value. As shown in table 2, our results are in excellent agreement with the data for $R e \leqslant 325$. The maximum difference is less than 3.2%, and the mean of the absolute value of the relative difference is 2.2%, both comparable to uncertainties in $T a_{\text {crit }}^{\text {expt }}$ associated with readability of experimental Taylor numbers as propagated through the relationship between $T a$ and $T a^{S C}$. The aspect ratio in the $\eta=0.955$ experiments exceeded 570, compared to 114 and 186 for Kaye \& Elgar, 172 for Becker \& Kaye, 115 for Takeuchi \& Jankowski, and a range of 32-175 for Gravas \& Martin. From the close agreement of our computed Ta crit values with the data of Sorour \& Coney, we conclude that finite-amplitude instability either did not occur in their experiments, or occurred only slightly below the critical values predicted by linear stability theory. The larger aspect ratio of Sorour \& Coney apparently provided sufficient streamwise length for detectable vortical structures to develop, at least for $R e \leqslant 325$. As $R e$ increases, table 2 shows that the $T a$ at which onset is first detected in an annulus of fixed aspect ratio continues to increase, while the linear analysis predicts a plateau value of $T a_{\text {crit }}$.

For $\eta=0.8$ and $R e \leqslant 320$, table 2 shows that agreement between the experiments of Sorour \& Coney and computation is still good, but less close than for $\eta=0.955$. For $\eta=0.8$, the maximum difference and mean absolute value of the relative difference over this $R e$ range are 13% and 6.0%, respectively, with the experimental $T a_{\text {crit }}$ values lying at or slightly below the computed values, except at the two lowest $R e$ and at the highest $R e$. (For $R e=36.5$, the nearly identical experimental values of $T a^{S C}$ at each radius seem to be anomalously high.) These results are taken as evidence that for

Authors	η	$R e$	Ta ${ }_{\text {crit }}{ }^{\text {expt }}$	Ta crit ${ }_{\text {comp }}$
Sorour \& Coney (1979)$L /\left(R_{o}-R_{i}\right)=130$	0.8	26	(3620) 31.9	29.16
		36.5	(5420) 39.0	33.80
		60	(6380) 42.4	43.78
		75	(6810) 43.8	47.29
		97	(7800) 46.8	50.55
		151	(9040) 50.4	54.08
		195	(9760) 52.4	55.12
		239	(10420) 54.1	55.60
		281	(11120) 55.9	55.86
		320	(12100) 58.3	56.00
Sorour \& Coney (1979)$L /\left(R_{o}-R_{i}\right)>570$	0.955	26.4	(2540) 11.1	11.42
		33.5	(3440) 12.9	12.64
		42	(4670) 15.0	14.32
		54	(6000) 17.0	16.91
		67	(8040) 19.7	19.29
		78.5	(9790) 21.7	20.97
		94	(11480) 23.5	22.97
		107	(12670) 24.7	24.49
		135	(15290) 27.2	27.34
		150	(16180) 27.9	28.68
		182	(19000) 30.3	31.15
		200	(20410) 31.4	32.36
		215	(22210) 32.7	33.27
		240	(24210) 34.2	34.64
		260	(26700) 35.9	35.62
		325	(32790) 39.8	38.19
		370	(36630) 42.0	39.55
		450	(44 530) 46.3	41.37
		525	$(51500) 49.9$	42.60
		595	(57400) 52.6	43.46
$\begin{aligned} & \text { Greaves et al. }(1983) \\ & L /\left(R_{o}-R_{i}\right) \approx 310 \end{aligned}$	0.909	43.75	(10000) 22.9	21.98
		87.5	(23000) 34.8	31.95
		131	(31 200) 40.5	37.36
		262	(45 100) 48.7	44.52
		435.5	$(48000) 50.2$	47.32
		800	(43 500) 47.8	48.71
		1010	(38000) 44.7	48.95

Table 2. Comparison of experimental and computed values of $T a_{\text {crit }}$ for $\mu=0$. Parentheses denote values of differently defined Taylor numbers read from figures of other authors.
$R e \leqslant 320$, either there is no finite-amplitude instability, or finite-amplitude instability sets in at $T a$ values only slightly below those predicted by linear theory. The relatively small differences between experiment and computation at the highest $R e$ suggest that the aspect ratio $\left(L /\left(R_{o}-R_{i}\right)=130\right)$ allows development of detectable disturbances for $\eta=0.8$ and $R e \leqslant 320$. (Beyond $R e=320$, the experimental $T a_{c r i t}$ values continue to grow with $R e$, while the computed values have essentially reached their plateau, as shown in table 2.)

Grosvenor (1981) and Greaves et al. (1983) used hot-wire anemometry to detect onset for $\mu=0$ over essentially the same range $(43.75 \leqslant R e \leqslant 1112)$ considered by Gravas \& Martin (1978) for similar η. They reported Taylor numbers at four azimuthal positions in an annulus with less axial and azimuthal gap variation
(maximum 3.9\% variation from the mean gap for $\eta=0.909$) than in that of Gravas \& Martin. Each parenthetical $T a_{\text {crit }}$ in table 2 was taken from table A2 of Grosvenor (1981), and is the lowest value at the four positions. For $\eta=0.909$ (with aspect ratio ≈ 310), $T a_{\text {crit }}^{\text {comp }}$ at $R e=43.75$ lies less than 5% below $T a_{\text {crit }}^{\text {expt }}$, with the discrepancy being about 9% at $R e=87.5,131$, and 262 . The discrepancy decreases (to $\approx 6 \%$) at $R e=435.5$, before $T a_{\text {crit }}^{\text {expt }}$ falls increasingly below $T a_{\text {crit }}^{\text {comp }}$ at higher $R e$. We interpret these results in terms of sufficient axial development length at low $R e$, with subcritical onset at higher $R e$. For $\eta=0.565$, computations at $R e=69.35,198.9$, and 300.45 show that computed values lie $40-54 \%$ below experimental values. This is consistent with a profoundly insufficient axial development length at an annular aspect ratio of less than 50.

For $\mu=0$ and $\eta=0.8$, Bühler \& Polifke (1990) reported onset with $m_{\text {crit }}=1$ over $2.7<\operatorname{Re}<4.6$, and with $m_{\text {crit }}=0$ at larger and smaller $R e$. They also reported a 'scalloped' $R e-T a_{\text {crit }}$ stability boundary. Their results differ from ours at $\eta=0.77$ (figure $1 a$), and from specific computations for $\eta=0.8$, in which we find that instability sets in through an axisymmetric disturbance $\left(m_{\text {crit }}=0\right)$ at $R e=3,3.5,4$, and 4.5. The aspect ratio in the experiments of Bühler \& Polifke was only 20.

Wave speeds

From the definition of the wave speed (see Part 1), one can show that $V_{\text {drift }} / \bar{V}_{Z}=c_{\text {crit }}$, where $V_{\text {drift }}$ is the axial drift speed of the vortical structures. For $\mu=0$, our results can be compared to two previous reports of dimensionless axial drift speed. At Taylor numbers somewhat above critical, Donnelly \& Fultz (1960) measured dimensionless drift speeds of $1.2_{5}, 1.0_{7}$, and 1.3_{6} at $R e=3.13,4.40$, and 5.70 for $\eta=0.949_{7}$, and Howes \& Rudman (1998) obtained $V_{\text {phase }} / \bar{V}_{Z}=1.16 \pm 0.005$ in slightly supercritical computations at $R e=2.61, T a=12.5$, and $\eta=0.9524$. These results compare very well to our computed $c_{\text {crit }}$ values of 1.169 to 1.170 for $\eta=0.95$ over $0 \leqslant$ $R e \leqslant 8$.

Figure 5 of Sorour \& Coney shows experimental $V_{d r i f t} / \bar{V}_{Z}$ values at seven $R e$ over $48<\operatorname{Re} \leqslant 500$ for $\eta=0.80$, and at $19 \operatorname{Re}$ over $16<\operatorname{Re}<610$ for $\eta=0.955$. For $\eta=0.80$, $V_{\text {drift }} / \bar{V}_{Z}$ decreases monotonically from about 1.5 to about 0.3 over the experimental Re range. Computations for $\eta=0.77$ (see figure $1 d$) show that the computed $c_{\text {crit }}$ decreases monotonically from 1.45 to 1.42 while $m_{\text {crit }}=2$ between $R e=38$ and 45, at which point $c_{\text {crit }}$ jumps to 1.54 , coincident with $m_{\text {crit }}$ jumping to 3 . At larger Re, the computed $c_{\text {crit }}$ undergoes a series of jump increases, separated by progressively shorter $R e$ intervals of monotonic decrease. On the scale of the experimental $R e$ increments, however, $c_{\text {crit }}$ increases monotonically. Computations for $\eta=0.8$ give similar results. For $\eta=0.955$, the experimental $V_{d r i f t} / \bar{V}_{Z}$ increases from about 1.6 near $R e=16$ to about 2.8 near $R e=100$, before decreasing to about 1.8 near $R e=610$. For $\eta=0.95, c_{\text {crit }}$ is about 1.3 at $R e=10$, and for the experimental $R e$ increments, increases monotonically and approaches an asymptote of about 3.3 just beyond the highest $R e$ considered by Sorour \& Coney. These results differ only slightly from those computed for $\eta=0.955$, and are in good agreement with the data. Simmers \& Coney (1980) state that the earlier wave speed measurements of Sorour \& Coney (for which Taylor numbers were not reported) were performed "with the flow just critical", from which one can infer that over the Re range where the critical $T a$ values are in excellent agreement, the wave speed should be close to the critical values.

Figure 2 of the experimental paper by Wereley \& Lueptow (1999) shows that for $\mu=$ 0 and $\eta=0.83, m_{\text {crit }}$ jumps from 0 to 1 near $R e=8$. Our computations show that this jump occurs at $R e=16$ and 8 at $\eta=0.77$ and 0.95 , respectively, suggesting that the
experimental $R e$ for this change is slightly low. Also, invariance of $T a_{\text {crit }}$ with respect to the direction of the axial flow (see $\S 5.5$ of Part 1) requires that $\mathrm{d} T a_{\text {crit }} / \mathrm{d} R e$ vanish at $R e=0$, suggesting a modification of the approximate boundary between SPF flow and propagating Taylor-like vortices shown in figure 2 of Wereley \& Lueptow.

3.2. Comparison to experiments of Mavec and Snyder

Mavec (1973) and Snyder (1965) reported experimental results for a wide range of $R e$ and μ at $\eta=0.77$ and $\eta \approx 0.95$, respectively. To date, no comparison of their non-zero- μ data to computation or theory has been made. Here, we present computed values of $T a_{\text {crit }}$ for their combinations of $R e \neq 0$ and μ, along with a comparison to their data.
$\eta=0.77$
For $\eta=0.77$ and eleven $R e$ in the range $24 \leqslant R e \leqslant 403.5$, Mavec reported critical combinations of $\left(N_{R \theta}\right)_{i}=2 \Omega_{i} R_{i}\left(R_{o}-R_{i}\right) / v$ and $\left(N_{R \theta}\right)_{o}=2 \Omega_{o} R_{o}\left(R_{o}-R_{i}\right) / v$, measured using aqueous glycerol solutions in an annulus with aspect ratio 160 . For each $R e$, results were reported for a range of μ spanning negative and positive values.

We have read $\left(N_{R \theta}\right)_{i}$ and $\left(N_{R \theta}\right)_{o}$ values for each data point from Mavec's figure 4, and calculated $\mu=\left(N_{R \theta}\right)_{o} \eta /\left(N_{R \theta}\right)_{i}$ and the corresponding critical Taylor number, $T a_{\text {crit }}^{\text {expt }}=\left(N_{R \theta}\right)_{i}(1-\eta) / 2 \eta$. These, and $T a_{\text {crit }}^{\text {comp }}$ and $m_{\text {crit }}$ at the calculated μ, are shown in table 3. Readability errors in $\left(N_{R \theta}\right)_{i}$ and $\left(N_{R \theta}\right)_{o}$ are small enough that calculated μ and $T a_{\text {crit }}^{\text {expt }}$ values are thought to be accurate to within 1%. For the 18 cases shown in table 3 for which $\mu>\eta^{2}=0.5929$, we expect that there is an $R e$ range for which there are two values of $T a_{\text {crit }}$, as discussed for $\mu=\eta=0.5$ (see Part 1). For comparison to Mavec's results in these cases, we have computed only the smaller $T a_{\text {crit }}$. In what follows, we consider the results in two $R e$ ranges: $24 \leqslant R e \leqslant 106$, and $R e \geqslant$ 134.75.

For each $R e$, the experimental and computed values of $T a_{\text {crit }}$ are unimodal functions of μ, providing that the two $\mu=0$ data at $R e=33,49$, and 330 are averaged. At small $R e$, agreement between experimental and computed $T a_{\text {crit }}$ values is generally excellent. Over $24 \leqslant \operatorname{Re} \leqslant 106$, there are 30 combinations of μ and $R e$ for which experimental and computed results differ by less than 2%, including ten of the twelve μ values at $R e=106$. This level of agreement suggests that the random errors in Mavec's experimental data are generally very small. Nonetheless, at small $R e$, there are still some systematic differences between experiment and computation. At each $R e$ in $24 \leqslant R e \leqslant 106$, the experimental $T a_{\text {crit }}$ exceeds that predicted by linear theory if $\mu \leqslant-0.7$ or $\mu \geqslant 0.35$. For $-0.7<\mu<0.35$, we have calculated the mean and root-mean-square (r.m.s.) of the difference $\Delta=T a_{\text {crit }}^{\text {comp }}-T a_{\text {crit }}^{\text {expt }}$ between experimental and computed $T a_{\text {crit }}$ values, along with the variance of Δ, at each $R e$. For two $R e$, the mean and r.m.s. values are much larger than the variance. At $R e=49$, the mean and r.m.s. differences are 3.3 and 3.4 , respectively, and the variance is 0.45 . (These values are not significantly reduced by averaging the two values at $\mu=0$.) At $R e=63.5$, the corresponding values are $3.1,3.1$, and 0.27 . By contrast, the mean and r.m.s. differences and the variance are $0.25,0.43$, and 0.15 , respectively, at $R e=24$, and $-0.18,0.41$, and 0.16 , respectively, at $R e=106$. These results suggest small systematic errors in the experiments at $R e=49$ and $R e=63.5$, discussed below.

For $R e \geqslant 134.75$, the situation is quite different. First, in this range, the experimental and computational results agree within (the arbitrary) 2% at only eight points, four of which are at $R e=134.75$, the smallest $R e$ in this range. Second, in this range of

μ	$T a_{\text {crit }}^{\text {expt }}$	Ta crit ${ }_{\text {comp }}$	$m_{\text {crit }}^{\text {comp }}$	μ	$T a_{\text {crit }}^{\text {expt }}$	Ta crit ${ }_{\text {comp }}$	$m_{\text {crit }}^{\text {comp }}$
$R e=24$							
-0.37	33.64	33.70	1	0.33	39.58	39.97	0
-0.26	32.52	32.29	1	0.41	46.20	46.18	0
0	31.05	31.86	1	0.46	55.17	53.01	0
0.20	34.64	34.86	1	0.48	76.06	57.03	0
$R e=33$							
-0.52	38.58	39.10	2	0.17	36.93	38.65	1
-0.37	36.64	36.89	2	0.26	40.61	41.62	1
-0.19	35.22	35.67	2	0.43	55.64	55.07	1
0	33.61	35.97	1	0.50	75.12	70.82	1
0	34.58	35.97	1				
$R e=49$							
-1.01	54.73	54.10	4	0.11	42.81	46.36	4
-0.68	43.49	46.58	4	0.20	45.02	49.03	4
-0.36	40.81	43.14	4	0.25	46.93	51.12	5
-0.13	40.40	43.15	4	0.33	51.73	55.65	5
0	40.81	44.34	3	0.50	77.23	76.96	8
0	41.78	44.34	3				
$R e=63.5$							
-1.01	73.41	59.17	6	0	45.73	49.33	7
-0.94	55.38	55.13	6	0.17	48.99	52.62	8
-0.41	45.79	47.85	6	0.21	50.20	53.79	8
-0.26	44.76	47.60	6	0.24	51.49	54.80	9
-0.17	44.73	47.89	6	0.27	53.11	55.86	9
-0.10	45.37	48.29	7	0.52	77.23	74.13	11
$R e=65.5$							
-1.05	60.50	58.10	6	0.14	50.46	52.31	8
-0.48	48.26	48.77	6	0.19	51.64	53.59	9
-0.27	47.11	48.15	7	0.28	56.05	56.51	9
-0.20	47.37	48.26	7	0.39	62.82	61.88	10
-0.11	47.52	48.72	7	0.44	69.14	65.36	11
0	47.87	49.88	7	0.49	72.82	69.76	11
0.090	48.99	51.25	8				
$R e=82.5$							
-1.13	65.03	62.90	7	0	51.23	53.01	10
-0.58	51.88	53.31	8	0.13	52.70	54.58	11
-0.41	51.05	52.20	8	0.17	52.70	55.23	11
-0.30	51.05	51.86	9	0.21	54.58	56.00	11
-0.24	50.90	51.84	9	0.24	54.94	56.64	12
-0.13	50.61	52.17	10	0.44	63.85	62.65	13
-0.072	50.61	52.45	10	0.56	67.67	68.81	14
$R e=106$							
-0.93	65.03	62.18	9	0.095	56.11	55.91	13
-0.74	59.35	59.13	10	0.15	56.64	56.31	14
-0.51	56.88	56.70	11	0.24	56.94	57.02	14
-0.26	56.35	55.39	12	0.37	58.97	58.65	14
-0.14	55.17	55.23	12	0.59	64.85	63.33	15
0	55.20	55.47	13	0.81	78.79	77.32	15

μ	$T a_{\text {crit }}^{\text {expt }}$	Ta crit ${ }_{\text {comp }}$	$m_{\text {crit }}^{\text {comp }}$	μ	$T a_{\text {crit }}^{\text {expt }}$	Ta crit ${ }_{\text {comp }}$	$m_{\text {crit }}^{\text {comp }}$
$R e=134.75$							
-0.78	70.47	63.36	12	0.56	57.88	58.99	16
-0.37	60.02	58.81	14	0.65	61.64	60.82	16
-0.26	59.29	58.04	14	0.87	70.03	75.10	15
-0.19	58.61	57.67	14	0.94	76.21	86.55	15
-0.054	57.52	57.09	15				
$R e=166$							
-0.85	77.53	67.65	14	0.14	58.11	56.88	17
-0.67	69.14	64.79	15	0.23	57.97	56.49	17
-0.39	63.94	61.24	16	0.34	57.76	56.24	17
-0.23	63.11	59.60	16	0.48	56.79	56.49	17
-0.15	62.32	58.90	16	0.71	57.17	59.85	16
-0.083	60.52	58.38	16	0.84	67.70	66.67	15
0	60.41	57.75	17	0.96	69.59	80.01	15
0.091	58.29	57.15	17				
$R e=244$							
-0.79	82.50	71.27	18	0.15	59.82	56.69	18
-0.70	74.65	69.52	18	0.29	57.88	55.50	18
-0.39	71.50	63.99	19	0.53	54.82	54.97	17
-0.25	66.94	61.78	19	0.77	54.73	59.02	16
-0.13	64.00	60.05	19	0.93	63.64	68.82	15
-0.058	63.05	59.09	19	1.01	67.82	77.81	14
0	62.38	58.36	19				
$R e=330$							
-0.82	81.94	74.48	21	0.15	61.35	56.53	19
-0.67	79.29	71.05	21	0.27	57.67	55.32	19
-0.35	69.79	64.45	20	0.45	52.96	54.27	18
-0.18	67.29	61.35	20	0.67	50.17	55.48	17
-0.071	65.82	59.58	20	0.80	51.79	58.99	16
0	64.44	58.54	20	0.96	56.35	68.90	15
0	65.26	58.54	20	1.11	61.94	89.43	13
0.079	62.53	57.43	19				
$R e=403.5$							
-0.63	79.65	71.05	22	0.20	60.17	55.87	19
-0.39	75.76	65.70	21	0.72	47.82	56.04	16
-0.29	71.29	63.67	21	0.84	48.85	60.30	16
-0.13	69.59	60.72	20	1.01	55.32	72.65	14
0	66.70	58.55	20	1.24	61.64	96.71	11
0.097	63.64	57.18	20				

Table 3. Comparison of computed values of $T a_{\text {crit }}$ to the experimental results of Mavec (1973) for $\eta=0.77$.
larger $R e$, the difference Δ at each $R e$ varies nearly monotonically with μ, beginning with $\Delta<0$ for the most negative values of μ, and ending with $\Delta>0$ for the most positive values. Linear least-squares fits of the form $\Delta=a \mu+b$ over $-0.7<\mu<0.35$ give values of the slope $a=2.6,3.1,3.8,4.3$, and 4.7 at $R e=134.75,166,244,330$, and 403.5, respectively, compared to $0.67,1.7,1.4,1.4,1.3,1.1$, and 0.50 at $R e=24$, $33,49,63.5,65.5,82.5$, and 106 , respectively. When all μ are included, the slopes are $-8.9,-2.5,1.4,6.1,-0.4,1.2$, and 0.2 at the lower $R e$ values, and 6.6, 6.7, 9.2, 14.9, and 21.7 at the higher values.

Figure 4. SPF stability boundaries for $\eta=0.77$ and the values of $R e$ (shown adjacent to each curve) and μ investigated experimentally by Mavec (1973). The dashed line corresponds to $\mu=\eta^{2}$.

The computed results presented in table 3 are shown in figure 4 using axes $\Omega_{o}\left(R_{o}-R_{i}\right)^{2} / \nu \equiv \mu T a$ and $\Omega_{i}\left(R_{o}-R_{i}\right)^{2} / \nu \equiv T a$, as is conventional for $R e=0$ (cf. figure 6.2 of DiPrima \& Swinney 1985). This representation is useful for assessing the effects of $R e$ and understanding behaviour near the Rayleigh line ($\mu=\eta^{2}$). Figure 4 shows that for $\eta=0.77$, the value of $\Omega_{o}\left(R_{o}-R_{i}\right)^{2} / \nu$ at which the critical $\Omega_{i}\left(R_{o}-R_{i}\right)^{2} / \nu$ attains its minimum initially shifts to more negative values as $R e$ increases. At an $R e$ apparently lying between 49 and 82.5 , the location of this minimum shifts towards positive values of $\Omega_{o}\left(R_{o}-R_{i}\right)^{2} / v$, with the $\Omega_{o}\left(R_{o}-R_{i}\right)^{2} / v=0$ axis being crossed between $R e=106$ and 134.75. The high- $R e$ plateau behaviour discussed in $\S \S 2.1-2.2$ is reflected in the near-coincidence of the results for $R e=330$ and 403.5. (Connnection of the points in figure 4 by third-order splines is responsible for the slight apparent divergence of the curves for $R e=330$ and 403.5 at sufficiently positive and negative μ.)

A number of Mavec's experimental points lie beyond the Rayleigh line $\left(\mu=\eta^{2}\right)$. Thus, on the basis of results in Part 1, for some combinations of μ and $R e$ we might expect two values of $T a_{\text {crit }}$, depending on the location of the turning point $\left(R e_{\text {min }}\right)$ for $\eta=0.77$ and each μ considered. (With the axes used in figure 4, two values of $T a_{\text {crit }}$ correspond to a constant- μ straight line intersecting the stability boundary for a given $R e$ at two different values of $\Omega_{o}\left(R_{o}-R_{i}\right)^{2} / \nu$.) For $R e=106$ and $\mu=0.81$, for which table 3 shows $T a_{\text {crpt }}^{\text {expt }}=78.79$ and $T a_{\text {crit }}^{\text {comp }}=77.32$, we computed a second value, $T a_{\text {crit }}=463$. None of Mavec's results suggest that he encountered two critical values of Ω_{o} for a single μ, so in all other cases we have computed only the smaller $T a_{c r i t}$ for comparison to his results.
$\eta \approx 0.95$
For $\eta=0.9497$ and 0.959 and seven non-zero $R e$ up to 200, Snyder (1965) measured critical values of Ω_{i} for fixed values of Ω_{o}, for water in annuli with aspect ratios
between 285 and 349. The dimensionless results shown in his figures 1 and $2(\eta=0.959)$ and figure $3(\eta=0.9497)$ span a range of negative and positive μ for $0 \leqslant R e \leqslant 200$. For $\operatorname{Re}>0$, we have read $R_{i}^{1 / 2} \Omega_{i}\left(R_{o}-R_{i}\right)^{3 / 2} / v$ and $R_{i}^{1 / 2} \Omega_{o}\left(R_{o}-R_{i}\right)^{3 / 2} / v$ from these figures, and calculated the μ values shown in table 4 from the ratio. Values of $T a_{\text {crit }}^{\text {expt }}$ shown in table 4 were obtained by multiplying ordinates read from Snyder's figures by $[(1-\eta) / \eta]^{1 / 2}$. Values of $T a_{\text {crit }}^{\text {comp }}$ and $m_{\text {crit }}$ at each combination of $R e, \mu$, and η are shown in table 4.

Agreement of our computations with the data of Snyder (1965) is generally excellent. In 43 out of 79 cases shown in table 4 , the difference between $T a_{\text {crit }}^{\text {comp }}$ and $T a_{\text {crit }}^{\text {expt }}$ is less than 2.5%, the sum of Snyder's estimates of the systematic (1.5%) and statistical (1%) errors in his measurements of the critical angular velocity of the inner cylinder. For 34 combinations of $R e$ and $\mu, T a_{\text {crit }}^{\text {comp }}$ and $T a_{\text {crit }}^{\text {expt }}$ agree within 2%. In 20 cases, agreement is within 1%. These generally small differences between $T a_{\text {crit }}^{\text {comp }}$ and $T a_{\text {crit }}^{\text {expt }}$ imply that errors in the values of $T a$ and μ due to our reading of his figures $1-3$ are also small. For $0<R e \leqslant 40$, the mean and r.m.s. values of $\Delta(-0.41$ and $0.43,-0.48$ and $0.50,-0.64$ and 0.78 , and -0.08 and 0.26 , for $R e=5,10,20$, and 40 , respectively) do not exceed 5% of $T a_{\text {crit }}$. For $R e=80$, agreement is within 2% for 13 of the 17μ values. Even at the highest $\operatorname{Re}(200)$, agreement is within 2% at six of the 14μ values.

As with the data of Mavec, there appear to be two types of systematic variation in Δ. First, at each $\operatorname{Re},|\Delta|$ is generally larger at the most positive and negative μ than at intermediate values. Second, there are $R e$ values for which the variance of Δ is much smaller than its r.m.s. For example, for $R e=5$ and 10 , the variance of $\Delta, 0.017$ and 0.021 , respectively, is about 4% of the r.m.s. of Δ, strongly suggesting that the random contribution to the differences is very small compared to the already small r.m.s. differences. This suggests, at least for $R e=5$ and 10 , that differences between experiment and computation are largely systematic. As for Mavec's data, we have calculated linear least-squares fits $\Delta=a \mu+b$ to the differences as a function of μ for each $R e$. For $R e=5,10,20,40,80,120$, and 200, the calculated slopes are $a=-0.036$, $-0.033,-0.20,0.31,-0.90,-0.95$, and -0.036 , respectively. (When only data in the range $-1.5<\mu<0.74$ are included, we find $a=-0.036,-0.033,0.10,0.31,0.32$, 0.95 , and 1.3 for the same Reynolds numbers.) The magnitudes of these slopes are considerably smaller than the corresponding slopes for the $\eta=0.77$ data of Mavec.

Unlike the $\eta=0.77$ case, table 4 shows that $T a_{\text {crit }}^{\text {comp }}$ significantly exceeds $T a_{\text {crit }}^{\text {expt }}$ for only a few combinations of $R e$ and μ. Specifically, $\Delta / T a_{\text {crit }}^{\text {expt }}>0.04$ for $R e=80$ at $\mu=-1.91\left(\Delta / T a_{\text {crit }}^{\text {expt }}=0.08\right)$, for $R e=120$ at $\mu=0.392\left(\Delta / T a_{\text {crit }}^{\text {expt }}=0.18\right)$, and for $R e=200$ at $\mu=0.146,0.293$, and $0.417\left(\Delta / T a_{\text {crpt }}=0.05,0.07\right.$, and 0.07 , respectively). The relatively large, isolated discrepancy for $R e=120$ at $\mu=0.392$ has no obvious explanation. For $R e=200, \Delta$ is quite small $(|\Delta| \leqslant 0.82)$ for $\mu<0$, increases monotonically to a maximum of 2.36 at $\mu=0.417$, and falls rapidly to -5.16 at $\mu=0.746$. This trend shows that the mechanisms of subcritical and delayed onset are unimportant for $\mu<0$, with the latter becoming increasingly significant as μ increases beyond zero.

4. Discussion

4.1. Implications for interpretation of experiment

As shown in $\S \S 3.1$ and 3.2, there is a broad range of $R e$ and μ for which SPF loses its stability at $T a_{\text {crit }}$ values very close to those predicted by linear theory. Sometimes,

Table 4. Comparison of computed values of $T a_{\text {crit }}$ to the experimental results of Snyder (1965). Values in bold correspond to $\eta=0.9497$; all other values are for $\eta=0.9590$.
however, there are systematic differences. Here, we assess the contributions of the mechanisms of subcritical and delayed onset to these differences.

For the cases considered in §2, finite-amplitude instability corresponds to $T a_{\text {crit }}^{\text {expt }}<T a_{\text {crit }}^{\text {comp }}$. (For $\mu>\eta^{2}$, finite-amplitude onset on the upper branch of the stability boundary (see Part 1) would occur above the linear $T a_{\text {crit }}$.) To date, little is known about nonlinear stability of SPF (Joseph \& Munson 1970; Joseph 1976) or even non-rotating annular Poiseuille flow. For the latter, results are limited to a perturbation analysis for axisymmetric disturbances (Strumolo 1983), and to computational simulations at three $\operatorname{Re}(13000,15500$, and 20000$)$ at $\eta=0.7$ with initial disturbances having one non-zero axial wavenumber (Shapiro, Shtilman \& Tumin 1999). When axial flow between rotating cylinders is exactly a quadratic function of the radial coordinate (as can be arranged by choosing the relative axial velocity of the cylinders to exactly cancel the logarithmic term in (2.1c) of Part 1), Joseph \& Munson (1970) have shown that finite-amplitude instability cannot occur for $\mu=1$, and argued that this result should carry over approximately to $\mu \neq 1$. Based on what is known about finite-amplitude instability in related flows (e.g. circular Poiseuille flow), we conjecture that when finite-amplitude instability is possible in SPF at high $R e$, the amplitude threshold is sufficiently low for subcritical onset to be observed routinely.

For $\mu=0$ and 0.2 , Takeuchi \& Jankowski (1981) found that their experimental $T a_{\text {crit }}$ values systematically exceeded predictions of linear analysis for $R e$ greater than about 40. For $\mu=-0.5$, experimental $T a_{\text {crit }}$ values exceeded computed values for all $R e>0$. They suggested that the linear stability analysis appears to be valid beyond the largest $\operatorname{Re}(100)$ at which they compared their computations and experiments. We note that $T a_{\text {crit }}^{\text {expt }}$ exceeding $T a_{\text {crit }}^{\text {comp }}$ cannot be regarded, by itself, as establishing the unimportance of finite-amplitude instability at a particular Re, since for the particular annular aspect ratio used, one of the mechanisms of onset delay might be the dominant effect, with finite-amplitude instability being observed only at larger aspect ratios. On the other hand, when $T a_{\text {crit }}^{\text {expt }}$ and $T a_{\text {crit }}^{\text {comp }}$ are nearly identical over a range of $R e$, the evidence for absence of finite-amplitude instability is much stronger.

For $\mu=0$, comparison of the data of Kaye and co-workers to our computations shows that agreement is generally very good at small $R e$. As $R e$ increases, $T a_{\text {crit }}^{\text {expt }}$ initially exceeds $T a_{\text {crit }}^{\text {comp }}$. (One onset delay mechanism suggested by Takeuchi \& Jankowski, involving a constant-head pump, is not applicable to the experiments of Kaye and co-workers, for which our results show that $\mathrm{d} T a_{\text {crit }} / \mathrm{d} R e \geqslant 0$ for $0<R e<R e^{*}$.) As $R e$ increases, $T a_{\text {crit }}^{\text {expt }}$ falls rapidly below the plateau value of $T a_{\text {crit }}^{\text {comp }}$. It seems likely that, over some Re range, there is competition between one or more of the mechanisms of subcritical and delayed onset. At sufficiently large $R e, T a_{c r i t}^{\text {expt }}-T a_{c r i t}^{\text {comp }}$ decreases and ultimately passes through zero. The results of Kaye \& Elgar show that at sufficiently high $R e$, subcritical onset dominates, with onset occurring (at all Ta) at $R e$ values close to those associated with finite-amplitude instability of plane and circular Poiseuille flow.

The reports of Kaye \& Elgar and Yamada (1962) that $T a_{\text {crit }}$ falls to zero near $R e=1000$ are consistent with known finite-amplitude instability in plane Poiseuille flow (corresponding to $\eta \rightarrow 1$ with no rotation) near $R e=1000$ (Carlson, Widnall \& Peeters 1982). Linear analysis would predict that $R e \rightarrow 5772$ (Orszag 1971) as $\eta \rightarrow 1$, consistent with monotonic decrease of the computed $R e_{A P}$ values as $\eta \rightarrow 1$ (figure 5). The results of Kaye \& Elgar, showing that $T a_{\text {crit }}=0$ near $R e=1000$ for $\eta=0.734$ and $R e=900$ for $\eta=0.820$, are consistent with $R e$ values at which finiteamplitude instability is expected for annular Poiseuille flow. Extrapolation of the $T a_{\text {crit }}$
values of Yamada $(1961,1962)$ to $T a_{\text {crit }}=0$ gives an $R e$ value near 1200, much less than the $\eta \rightarrow 1$ plane Poiseuille non-rotating limit, and comparable to the value for finite-amplitude instability in that limit. This strongly suggests that finite-amplitude instability occurred in Yamada's experiments.

On the other hand, essentially perfect agreement between our computations and the data of Sorour \& Coney for $\mu=0$ and $\eta=0.955$ in an annulus of high aspect ratio (>570) up to $R e=325$ convincingly shows that in their experiments the mechanisms of subcritical and delayed onset were unimportant. Since the disturbance level in their experiments, particularly at the entry to the rotating test section, seems to have been significant, the degree of agreement strongly suggests that either finite-amplitude instability does not occur for $R e \leqslant 325$, or if it does, the amplitude threshold is quite high or the range of subcritical $T a$ is very small. The degree of agreement between experiment and linear theory provides stronger evidence for the absence of finiteamplitude instability than any previously available for SPF, and quite likely for any shear flow.

For μ spanning a range of negative and positive values, agreement between the data of Snyder (1965) and Mavec (1973) and our computations is excellent over a wide range of $R e$ and μ. However, even for small $R e$, there are values of $R e$ and extreme values of μ for which systematic deviation occurs. Here, we discuss the implications of the agreement, as well as of the discrepancies, for interpretation of the experimental data.

Based on generally excellent agreement between Mavec's experiments and our computations at almost all 'intermediate' $\mu(-0.70<\mu<0.35)$ over $24 \leqslant R e \leqslant 106$, we conclude that subcritical and delayed onset mechanisms are unimportant in this regime.

For Mavec's data at $R e=49$ and 63.5, comparison of the mean and r.m.s. values of $\Delta=T a_{\text {crit }}^{\text {comp }}-T a_{\text {crit }}^{\text {expt }}$ to its variance strongly suggests the presence of small systematic errors, considerably larger than at other $R e$ over $24 \leqslant R e \leqslant 106$. We conjecture, from the systematically positive Δ at those two $R e$ and from the stability boundaries shown in figure 4, that the actual $R e$ was somewhat lower than reported for these two cases.

For $R e \geqslant 134.75$, comparison of Mavec's data to our computations, and especially consideration of the slopes of $\Delta=a \mu+b$, suggests that as $R e$ increases, mechanisms of onset delay become increasingly important except at the most positive μ, and that at these large rotation rate ratios, subcritical onset occurs at $T a_{\text {crit }}$ values lying progressively below the predictions of linear theory as μ and $R e$ increase. Of the eight combinations of $R e \geqslant 134.75$ and μ for which experimental and computed $T a_{\text {crit }}$ values agree within 2%, four are at the lowest $\operatorname{Re}(134.75)$. At least two of the remaining four are at values of μ at which the experimental and computational results 'cross over', corresponding to a μ for which the competing effects of subcritical and delayed onset nearly cancel. This contrasts to the situation at $R e=106$, for which experimental and computed $T a_{\text {crit }}$ values agree within 2% at nine consecutive μ.

Figure 5(a) shows a map of the experimental μ and $R e$ considered by Mavec, with each symbol corresponding to our assignment of the nature of onset. We note that there is not a one-to-one correspondence between points for which either linear theory underpredicts the experimental $T a_{\text {crit }}(\Delta<0)$ and those identified as 'delayed onset', or those for which $\Delta>0$ and 'subcritical onset'. Rather, we have used Δ, its mean, variance, and r.m.s., and their dependence on $R e$ and μ, to assign onset at each point. This assignment is somewhat subjective. For example, for $R e=49$ and 63.5 , we characterize the transition as 'linear onset' over a broad range of μ,

Figure 5. Nature of transition in ($\mu, R e$)-plane for (a) $\eta=0.77$ data of Mavec ($L /\left(R_{o}-R_{i}\right.$) = 160) and (b) $\eta \approx 0.95$ data of Snyder $\left(285 \leqslant L /\left(R_{o}-R_{i}\right) \leqslant 349\right)$: \square linear onset; O subcritical onset; ∇ delayed onset $; \diamond$ competition between subcritical and delayed onset.
since the small variance of Δ compared to its mean and r.m.s. values suggests that consistently positive Δ are associated with small errors in $R e$ rather than subcritical onset. For several Re, it appears (as discussed above) that subcritical onset and onset delay compete with each other, giving Δ values of opposite sign at consecutive μ, with magnitudes considerably greater than the low variance of Δ in the low and intermediate range of $|\mu|$. These points, which we characterize as 'competing', include several of the high-Re points at which isolated small values of Δ were found.

There is a broad range of $R e$ and μ in which subcritical onset is not apparent in the experiments of Mavec. The onset map suggests that finite-amplitude instability was
not observed for $R e<106$, and at higher $R e$ occurred only at sufficiently positive μ, with the required μ decreasing with $R e$. On the other hand, onset is delayed at large μ even for small $R e$. At larger $R e$, competition between the mechanisms of subcritical and delayed onset seems to occur at rotation rate ratios intermediate between large μ at which onset is subcritical and smaller μ at which linear theory accurately predicts onset. For $R e \geqslant 244$, our map suggests that linear onset was not observed in Mavec's experiments, being subcritical for sufficiently positive μ, and delayed for smaller μ. In general, increasing μ at fixed $R e$ leads to a transition from delayed to linear onset, to competition between the mechanisms of subcritical and delayed onset, and finally to subcritical onset.

In Snyder's experiments with $\eta \approx 0.95$, the extremely small variance of Δ for some Re suggests that differences between computed and experimental $T a_{\text {crit }}$ values are largely due to small systematic errors. In particular, we note the 4% variance of the already small r.m.s. values of Δ for $R e=5$ and 10 . As for similar cases in Mavec's data, we conjecture that this is associated with a (small) difference between the reported and actual $R e$, as discussed above for Mavec's data at $R e=49$ and 63.5, with the sign $(\Delta<0)$ indicating that the actual $R e$ was larger than reported in these cases.

The generally smaller slopes of the least-squares lines $\Delta=a \mu+b$ for Snyder's data compared to Mavec's data suggest that subcritical instability and onset-delaying mechanisms were less important in Snyder's experiments, in which the radius ratio was larger than Mavec's, as was the annular aspect ratio.

Figure 5(b) shows an onset map for the experiments of Snyder (1965). Compared to results shown in figure $5(a)$, the most dramatic difference is the wider range of $R e$ and μ over which subcritical instability does not occur. The map indicates that subcritical instability was not observed in Snyder's experiments for $R e<120$, except at one point ($R e=80, \mu=-1.91$), where μ assumes its most negative value in the experiments of Mavec or Snyder. For larger Re, subcritical effects appear to be manifested in a μ range whose width increases with increasing $R e$. With the exception of the $R e=80$, $\mu=-1.91$ point, increasing μ at fixed $R e$ leads to a change from linear to subcritical onset (when $R e$ is high enough), to competition between the mechanisms of subcritical and delayed onset, and ultimately to significant delay of onset.

Figures $5(a)$ and $5(b)$ show a broad qualitative similarity in the regions of the ($\mu, R e$)-plane in which linear onset of instability in SPF occurred in the experiments of Mavec and Snyder. In both cases, onset is closely predicted by linear theory up to at least $R e=166$ (200 for Snyder's experiments) over a significant range of μ. For Mavec's $\eta=0.77$ experiments with $L /\left(R_{o}-R_{i}\right)=160$, we judge onset at $R e=166$ to occur by a linear mechanism for $-0.083 \leqslant \mu \leqslant 0.84$. For Snyder's experiments with $\eta \approx 0.95$ and $285 \leqslant L /\left(R_{o}-R_{i}\right) \leqslant 349$, we judge onset to occur by a linear mechanism at the highest $\operatorname{Re}(200)$ for $-1.32 \leqslant \mu \leqslant 0.464$ (i.e. at all but the three largest μ values). At smaller $R e$, onset appears to be linear for a somewhat wider range of negative μ in Snyder's experiments than in Mavec's. In Mavec's experiments, subcritical instability occurs over a progressively broader range of positive μ as $R e$ increases, while in Snyder's, with larger radius ratio and aspect ratios, departures from linear onset at positive μ are associated with delayed onset.

If, to a first approximation, we associate delayed onset with finite aspect ratio effects, and subcritical onset with the nominal base flow (depending on $R e, \mu$, and η), then we might conjecture that subcritical onset is less important (e.g. occurs over a smaller range of $R e$ and μ, or has a higher amplitude threshold, or occurs over a narrower range of $T a$ lying below the $T a_{\text {crit }}$ of linear theory) in the higher- η experiments of Snyder.

4.2. Relationship to annular Poiseuille flow

As discussed in Part 1, connection of the low-Re Taylor-Couette instability to the high-Re instability of annular Poiseuille flow had been made prior to the present work only for $\mu=0$ and $\eta=0.95$, subject to the limitation of axisymmetric disturbances (Ng \& Turner 1982). As shown in $\S 2.2$, transition for $\mu=0$ and $\eta=0.95$ actually occurs from non-axisymmetric centrifugal instability to non-axisymmetric Tollmien-Schlichting-like instability. As for $\eta=0.5$, transition from centrifugal instability to the TS-like instability occurs just below $R e=R e_{A P}$ for each combination of μ and η considered.

For each combination of μ and $\eta, m_{\text {crit }}$ decreases from its value on the high-Re plateau to 2 as one passes through $R e^{*}$. Beyond $R e^{*}, m_{\text {crit }}$ is non-increasing, and at $R e_{A P}$ assumes the values of 1 and 0 for $\eta=0.77$, and 0.95 , respectively. The nonzero $m_{\text {crit }}$ at $R e_{A P}$ for $\eta=0.77$ is at variance with the expectation that the critical

4.3. Relationship to the narrow-gap limit

For $\mu=0$, we note that the initial range, $0 \leqslant R e \leqslant R e_{0}$, for which $m_{\text {crit }}=0$, is progressively reduced as $\eta \rightarrow 1$, with $R e_{0}=24,16$, and 8 for $\eta=0.5,0.77$, and 0.95 , respectively. This suggests that in the narrow-gap limit, the initial range of $R e$ for which instability sets in as axisymmetric Taylor-like vortices propagating downstream will be small. The only prior theoretical work accounting for non-axisymmetric disturbances for $\mu \neq 0$ in the narrow-gap limit is that of Chung \& Astill (1977), errors in which have been discussed by Takeuchi \& Jankowski and Ng \& Turner.

The only experimental work for $\mu \neq 0$ in the narrow-gap limit is that of Snyder (1965), for $\eta \approx 0.95$ over the ranges $0 \leqslant R e \leqslant 200$ and $-2 \leqslant \mu \leqslant 0.92$, with the upper bound on μ being approximately the value beyond which circular Couette flow is linearly stable (Synge 1938). For $\mu=0.2$, it is evident from points near the $\mu=0.2$ line in Snyder's figure 1 that $T a_{\text {crit }}$ increases monotonically with $R e$ over the range investigated. This is consistent with the trend suggested by our results for $\eta=0.5$ (Part 1) and 0.77 (figure $2 a$), where we see that as η increases, (a) there is an increase in the Re beyond which axial shear destabilizes SPF with respect to centrifugal instability, (b) the magnitude of that destabilization decreases, and (c) the plateau begins at higher Re. Together with our results for $\eta=0.5$ and 0.77 , the results of Snyder suggest that at least for $\mu=0.2$, axial flow does not reduce the critical $T a$ for onset of centrifugal instability in the limit $\eta \rightarrow 1$.

For the Taylor number definition used by Takeuchi \& Jankowski and in the present work, $T a_{\text {crit }}$ vanishes for $R e=0$ as $\eta \rightarrow 1$. Figure 6 shows the $\mu=0$ results of $\S 2$ plotted in terms of a modified Taylor number defined by

$$
\begin{equation*}
\hat{T} a=T a\left(\frac{\eta}{1-\eta}\right)^{1 / 2} \tag{4.1}
\end{equation*}
$$

the critical value of which approaches $\sqrt{1707.762 \ldots}$ as $\eta \rightarrow 1$ for $R e=0$ and $\mu=0$. It appears that the plateau value of $\hat{T a}$ grows without bound as $\eta \rightarrow 1$. Note that $R e_{A P}$ approaches the plane Poiseuille limit $R e=5772$ from above as $\eta \rightarrow 1$. Finally, we note that $m_{\text {crit }}=0$ at $R e_{A P}$ for $\eta=0.95$ is consistent with the expected behaviour as $\eta \rightarrow 1$, based on the two-dimensionality of the critical TS disturbance in plane Poiseuille flow.

Figure 6. Critical $T a[\eta /(1-\eta)]^{1 / 2}$ versus $R e$ for $\mu=0$ and $\eta=0.5,0.77$, and 0.95 .

5. Conclusions

The complete linear stability boundaries for spiral Poiseuille flow show that for $\eta=0.77$ and 0.95 and each rotation rate ratio $\mu<\eta^{2}$ considered, we can connect the onset of instability for circular Couette flow to the onset of instability in annular Poiseuille flow. For $\mu>\eta^{2}$, no instability is possible on a linear basis from $R e=0$ up to a turning point beyond which the stability boundary is multi-valued and SPF is stable in two disjoint $T a$ ranges. For $\mu<\eta^{2}$, an axial pressure gradient stabilizes SPF with respect to centrifugal instability up to high $R e$, as shown by Ng \& Turner. In each case, $T a_{\text {crit }}$ reaches a plateau before falling precipitously to zero as $R e$ approaches $R e_{A P}$, the critical $R e$ for annular Poiseuille flow. The transition from centrifugal instability at small $R e$ to a shear instability of Tollmien-Schlichting type occurs at $R e^{*}$ (slightly smaller than $R e_{A P}$), at which the critical azimuthal wavenumber drops from its value on the high-Re plateau to $m_{\text {crit }}=2$ in each case considered.

Comparison to data for $\mu=0$ shows that for each η and aspect ratio, there is an Re range in which subcritical instability does not occur, and for which the annulus is long enough to allow development of detectable secondary flow. For a narrow-gap ($\eta=0.955$) annulus of large aspect ratio (>570), agreement between experiment and computation is essentially exact up to $R e=325$, showing that neither finite-amplitude instability nor any other type of subcritical onset occurs over a wide range of $R e$ when the outer cylinder is fixed. For $\eta=0.77$ and $\eta \approx 0.95$, comparison to data up to $R e>100$ suggests existence of a substantial range of μ and $R e$ in which subcritical onset does not occur.

The authors thank Drs John E. R. Coney and Roger I. Grosvenor and Professor Howard A. Snyder for providing access to their original data, Professor Hassan M. Nagib for providing a copy of the thesis of Mavec, and Professor Snyder and anonymous reviewers for helpful comments. This work was supported in part by NSF Grants CTS-9422770 and CTS-9613241, and DOE Grant DE-FG02-96ER45607. Some of the computations were performed using the facilities of the National Center for Supercomputing Applications.

REFERENCES

Becker, K. M. \& Kaye, J. 1962 Measurements of diabatic flow in an annulus with an inner rotating cylinder. J. Heat Transfer 84, 97-105.
Bühler, K. \& Polifke, N. 1990 Dynamical behaviour of Taylor vortices with superimposed axial flow. In Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems (ed. F. H. Busse \& L. Kramer), pp. 21-29. Plenum.
Carlson, D. R., Widnall, S. E. \& Peeters, M. F. 1982 A flow-visualization study of transition in plane Poiseuille flow. J. Fluid Mech. 121, 487-505.
Chung, K. C. \& Astill, K. N. 1977 Hydrodynamic instability of viscous flow between coaxial cylinders with fully developed axial flow. J. Fluid Mech. 81, 641-655.
Cotrell, D. L. \& Pearlstein, A. J. 2004 The connection between centrifugal instability and Tollmien-Schlichting-like instability for spiral Poiseuille flow. J. Fluid Mech. 509, 331-351 (referred to herein as Part 1).
DiPrima, R. C. \& Swinney, H. L. 1985 Instabilities and transition in flow between concentric rotating cylinders. In Hydrodynamic Instabilities and the Transition to Turbulence (ed. H. L. Swinney \& J. P. Gollub), 2nd edn, pp. 139-180. Springer.
Donnelly, R. J. \& Fultz, D. 1960 Experiments on the stability of viscous flow between rotating cylinders. II. Visual observations. Proc. R. Soc. Lond. A 258, 101-123.
Garg, V. K. 1980 Spatial stability of concentric annular flow. J. Phys. Soc. Japan 49, 1577-1583.
Gravas, N. \& Martin, B. W. 1978 Instability of viscous axial flow in annuli having a rotating inner cylinder. J. Fluid Mech. 86, 385-394.
Greaves, P. L., Grosvenor, R. I. \& Martin, B. W. 1983 Factors affecting the stability of viscous axial flow in annuli with a rotating inner cylinder. Intl J. Heat Fluid Flow 4, 187-197.
Grosvenor, R. I. 1981 Axisymmetry of spiral Taylor vortex flow in annuli and the effect of gap width variations. M.Eng. Thesis, Univ. Wales Inst. Sci. Tech., Cardiff.
Howes, T. \& Rudman, M. 1998 Flow and axial dispersion simulation for traveling axisymmetric Taylor vortices. AIChE J. 44, 255-262.
Joseph, D. D. 1976 Stability of Fluid Motions I. Springer.
Joseph, D. D. \& Munson, B. R. 1970 Global stability of spiral flow. J. Fluid Mech. 43, 545-575.
Kaye, J. \& Elgar, J. 1958 Modes of adiabatic and diabatic fluid flow in an annulus with an inner rotating cylinder. Trans. ASME 80, 753-765.
Mahadevan, R. \& Lilley, G. M. 1977 The stability of axial flow between concentric cylinders to asymmetric disturbances. AGARD CP-224, pp. 9-1-9-10.
Mavec, J. A. 1973 Spiral and toroidal secondary motions in swirling flows through an annulus at low Reynolds numbers. MS Thesis, Illinois Inst. Tech., Chicago.
Meseguer, A. \& Marques, F. 2002 On the competition between centrifugal and shear instability in spiral Poiseuille flow. J. Fluid Mech. 455, 129-148.
Nagib, H. M. 1972 On instabilities and secondary motions in swirling flows through annuli. PhD Dissertation, Illinois Inst. Tech., Chicago.
NG, B. S. \& Turner, E. R. 1982 On the linear stability of spiral flow between rotating cylinders. Proc. R. Soc. Lond. A 382, 83-102.
OrsZag, S. A. 1971 Accurate solution of the Orr-Sommerfeld stability equation. J. Fluid Mech. 50, 689-703.
Shapiro, I., Shtilman, L. \& Tumin, A. 1999 On stability of flow in an annular channel. Phys. Fluids 11, 2984-2992.

Simmers, D. A. \& Coney, J. E. R. 1980 Velocity distributions in Taylor vortex flow with imposed laminar axial flow and isothermal surface heat transfer. Intl J. Heat Fluid Flow 2, 85-91.
Snyder, H. A. 1962 Experiments on the stability of spiral flow at low axial Reynolds numbers. Proc. R. Soc. Lond. A 265, 198-214.
Snyder, H. A. 1965 Experiments on the stability of two types of spiral flow. Ann. Phys. 31, 292-313.
Sorour, M. M. 1977 Hydrodynamic stability, with special reference to the effect of heat transfer, in a concentric annulus having an inner rotating wall. PhD Thesis, Leeds University.
Sorour, M. M. \& Coney, J. E. R. 1979 An experimental investigation of the stability of spiral vortex flow. J. Mech. Engng Sci. 21, 397-402.
Strumolo, G. S. 1983 Perturbed bifurcation theory for Poiseuille annular flow. J. Fluid Mech. 130, 59-72.
Synge, J. L. 1938 On the stability of a viscous liquid between two rotating coaxial cylinders. Proc. R. Soc. Lond. A 167, 250-256.

Takeuchi, D. I. \& Jankowski, D. F. 1981 A numerical and experimental investigation of the stability of spiral Poiseuille flow. J. Fluid Mech. 102, 101-126. Corrigendum 113, 536 (1981).
Wereley, S. T. \& Lueptow, R. M. 1999 Velocity field for Taylor-Couette flow with an axial flow. Phys. Fluids 11, 3637-3649.
Yamada, Y. 1961 Torque and pressure drop of the flow between rotating co-axial cylinders in low Reynolds number. Trans. JSME 27, 610-618. (Title and Abstract in English.)
Yamada, Y. 1962 Resistance of a flow through an annulus with an inner rotating cylinder. Bull. JSME 5, 302-310.

[^0]: \dagger Present address: NIST, 100 Bureau Drive, Gaithersburg, MD 20899-8910, USA.
 \ddagger Present address: Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA.

 ब Author to whom correspondence should be addressed: ajp@uiuc.edu

[^1]: \dagger Based on the cylinder radii given, $\eta=0.8097 \pm 0.0008$. Based on the reported gap between cylinders and the outer cylinder radius, $\eta=0.8055 \pm 0.0010$.

